
UAV-aided Wireless Networks

Markus Stroot
Ben Becks

David Algarra
Miguel Fontanilla

May 17, 2018

Date Performed: SS 2018
Instructor: Professor Bečvář

1 Introduction

With increasing use of mobile communication over the last two decades the
demand of a high bandwidth standard increased as well. The most recent and
potent development is the LTE Advanced Pro standard, an intermediate step
towards 5G. It is in the middle of development and lots of research and testing is
being performed by various institutions right now. A few public testing networks
have been installed. However, the focus lies on the implementation of a basic
network containing the standards components and mobile devices. The nature
of the used eNodeB is their fixed position and therefore fixed range of signal
coverage.
Our goal is to provide flexible, short time range extension which can be utilized
in some specific environments. The basic idea is to offer coverage to areas that
are not covered by fixed stations or in which the cells are overloaded. Therefore
we implement an eNodeB on a small and transportable computing system. This
system stays in range of the base station and connects to it. It acts as an access
point for mobile devices and relays traffic.
To achieve sufficient coverage, flexibility in positioning and deployment and a
fast installation of the relay we build a UAV and mount the relaying computing
system to it. The UAV is a Hexacopter operated by a single person. The
capabilities of modern drones, however, allow hovering in the same position via
GPS. Only start and landing is operated by a pilot while during the operation
time no piloting is needed. In further development even these steps can be
automated resulting in the only need to deploy the drone in an open field and
switching it on.
The relatively short time of operation due to power shortage does not suit
for a constant operation for increased coverage. Use cases can be emergency

1



situations after disasters in regions with bad mobile network coverage. Com-
munication is a crucial element of success in these situations.
A second capability of this relay is increased capacity in the covered area even
if connection to a base station is possible. Use case in this scenario are events
with many people and mobile devices.
This document summarizes our approach and the realization of the UAV guided
LTE relay. In chapter 2 we describe the software configuration for the computing
system. Chapter 3 documents the hardware configuration with components and
connections. Finally chapter 4 outlines future work to be done.

2 Communication Software Configuration

Main Communication software used is Open Air Interface [1], which allows to
emulate both an LTE eNodeB as well as the LTE Evolved Packet Core (EPC).
It is run over Linux, and thus, Ubuntu is used as the operating system for the
computers used. However, due to the intensive use of CPU required by the
eNodeB application, the kernel needs to be modified, to ensure that the power
saving mechanisms and CPU frequency scaling are disabled, as specified in [2].
In order to run the Open Air Interface software, computers used should be
previously configured. Three computers are used for this implementation, as
shown in Figure 3. Two of these computers are desktop computers, and they
are in charge of running the EPCs and one of the eNodeBs, while the computer
installed in the UAV is a lighweight but powerful one, in charge of running the
other eNodeB and supporting the LTE fronthaul connection via an LTE dongle.
The nomenclature used for this computers is listed below:

• Computer 1 for the desktop computer running the eNodeB 1

• Computer 2 for the UAV onboard computer

• Computer 3 running both EPCs

In the case of the third computer, both EPCs are running as virtual machines,
so the computer will act as a gateway to the internet, and an interconnection
between both EPCs and the eNodeB 1. In Figure 1 the IP addressing scheme
used in the implementation is shown. Computer 1 and 3 are connected to the
same private network, within the range 192.168.0.1/24, in which the router, is
the main gateway to the public internet. Each EPC has its own pool of IP
addresses, that are assigned to the the eNodeBs that are connected to it and
to the UEs. This IP pool range can be modified in the EPC configuration files.
The link between the USB dongle and computer 1 is handled as a point-to-point
connection, so the addressing scheme is not relevant. Due to the existence of two
IP ranges in the same virtual machine, some changes are necessary regarding
IP forwarding.
The main steps to set the communication software are listed below:

a. LTE dongle configuration

2



Figure 1: IP scheme of the Communication system

b. Configure IP routing

c. Configure NAT

d. MTU reconfiguration

e. Configure EPCs and eNbs

Figure 2: Physical Architecture of the Communication system

2.1 LTE dongle configuration

In some of the tested computers, the LTE dongle is not properly detected when
first connected, since it is detected as an USB mass storage device instead of an
USB modem. The following command can be issued to determine whether the
USB is working as a mass device or as a modem.

l su sb

If it is detected as a mass storage device, the following command is to be issued
to modify its function.

sudo usb modeswitch −v idVendor −p idProduct −J

Where idV endor and idProduct are provided in the lsusb output, as values
separated by a colon, in the form XXXX : XXXX.

3



Figure 3: Logical Architecture of the Communication system

2.2 Configure IP routing

Traffic handed by EPC 1 need to be properly routed when it is destinated to
the UEs of the eNodeB 2. In order to do so, the following commands are issued
in EPC 1.

ip route IP1/mask v ia IP2

Where IP1 is the destination address, IP2 is the IP of the next hop, and mask
is the netmask of the destination address.

2.3 Configure NAT in EPC 2

After performing traffic captures with Wireshark it can be verified that EPC
2, running in computer 3 cannot send back traffic to EPC 1, also running in
computer 3, due to the different IP addresses range. Therefore, Network Address
Translation is required in EPC 2. By issuing the following commands, it can be
easily configured.

i p t a b l e s −t nat −F

i p t a b l e s −t nat −A PREROUTING −d IP1 −j DNAT t o −d e s t i n a t i o n IP2

i p t a b l e s −t nat −A POSTROUTING −s IP2 −j SNAT t o −source IP1

The main command flushes the NAT table, to avoid inconsistencies with pre-
vious rules. IP1 is the EPC 2 address which is within the computer network
range, whereas IP2 is the IP assigned to the EPC 2 from its IP pool range (it
is in the same range as the IPs assigned to UEs).

4



2.4 MTU reconfiguration

The MTU of the links should be modified to allow the double encapsulated
packet to be carried without problems. In order to do so, it set to different
values depending on the link. The command used is the following:

i f c o n f i g i n t e r f a c e mtu MTUSize .

Where MTUsize is the size in bytes. The MTU used are:

• 1400 bytes Between computer 2 and computer 1

• 2000 bytes Between computer 1 and computer 3

The MTU between the UE and the eNodeB 2 is set in the configuration files of
the OpenAirInterface eNodeB application. It is recommended to be set to 1300
bytes.

2.5 EPCs configuration

It is important to configure MMEs properly to allow communication. The SIM
card used in the LTE dongle should be associated with MME 1 whereas the one
in the UE should be assoaciated with MME 2. For our tests, MME 92 is used
in EPC 1 and 94 in EPC 2. IP addresses can be easily configured in both the
eNodeB and EPC configuration files.

It is recommended to use Wireshark with ping utilities in all the computers
during the configuration phase for troubleshooting and reachability tests.

3 Hardware Architecture

3.1 Drone-parts and physical configuration

The drone was intentionally chosen not to be a pre-built one, but a set. This
ensures modularity of all the parts and makes it easier to exchange and customize
each part as needed. This said, we tried to stay as close as possible to given
tutorials and suggestions in order to minimize the risk of failure. All main parts,
excluding the battery, were ordered in the online shop of well-known Drone/UAV
manufacturer “Tarot” [3]. The battery was purchased in a local RC-model-shop,
because of safety restrictions on the shipping of Lithium-Polymer batteries. A
listing of all Parts is shown list 1. All these parts were assembled using the
provided instruction and some tutorials we found on the internet. A picture of
the final assembly can be seen in figure 4.

3.2 Calibration and Getting Started

3.2.1 ESC Calibration

Firstly, the ESCs have to be calibrated to the range of the throttle. This is
done by connecting each ESC in turn to the throttle output of the RC-receiver

5



Air-frame We used the Tarot Air-frame [4]. This frame is made of mostly
carbon-fiber and plastics to archive low weight and high stability. It
comes in parts and has to be assembled, however all parts and screws
are included. The body even consists of a PCB which handles the power
distribution.

ESCs As motor controller we used standard 40A ESCs [5]. They control the
motor speed according to the servo signal they receive.

Motors They are 380KV brushless DC motors [6], which we equipped with 12
inch propellers.

Flight Controller We got the NAZA-M V2 flight controller [7]. It comes with
a central unit including IMU and motor controller output. Further,they
provide a GPS-receiver, a USB-interface with status LED and a power
supply unit.

RC-Controller This controller provides remote control capabilities to the user.
It is a standard RC-controller and it comes with a receiver unit, that can
be connected to the flight controller or used independently.

Communication HW The communication hardware for the LTE relay con-
sists of a Intel NUC computer [8] equipped with an LTE-dongle and and
a SDR.

Power Supply The voltage for the operation of the drone is provided by a
6-cell 4.4 Ah lithium-polymer battery. The communication hardware is
powered by a 15 Ah high-performance powerbank.

List 1: Test

in turn, putting the controller in full throttle position and connecting everything
to the power supply. The ESC will go in calibration mode. Moving the throttle
stick to the very bottom position and back up will calibrate its range into the
ESC.

3.2.2 IMU and Compass Calibration

Once ESCs are calibrated and everything is mounted it is necessary to calibrate
the IMU inside the NAZA flight controller. This is done by the NAZA driver
software available on their homepage [7]. The drone is placed on an even and
steady surface and start calibration mode through the software. This estimates
e.g. gyroscope and accelerometer bias.
The compass calibration is a bit more complicated. it can be done before the
flight. The drone is started and using the RC-controller the user has to switch
several times between manual and altitude-assisted flight mode (flight modes
in list 2). The drone then enters compass calibration mode. Now it has to be

6



Figure 4: Drone completely assembled

moved in circles by a person, first facing up and then on its side. This calibrates
the drone to the magnetic conditions on site and has to be repeated when setup
or location are changed.

Manual In this mode there is only basic stabilization. The altitude however is
directly connected to the throttle and the positioning has to be handled
manually as well.

Altitude This mode stabilizes the altitude and position using the IMU inside
NAZA

GPS This mode improves the altitude mode by fusing the data with compass
and GPS information. It is only available when enough GPS satellites are
available and the magnetic conditions are good.

List 2: Flight modes

3.2.3 Starting

Finally the drone can be started using one of the starting sequences described in
the NAZA user manual [7]. The motors will start turning and the throttle must
be moved up or they will be stopped again. Flying the drone is done by the two
control-sticks on the RC-controller. The throttle stick also serves as yaw-control
in its other axis. The second stick will control pitch and roll angles.

7



4 Future Work

One of the most interesting features to be implemented is the autonomous po-
sitioning of the drone, for example, based on the received signal level by the
users. To do so, a ground station is required to command the drone and com-
municate with it. The only implementation compatible with Naza V2 autopilot
is a proprietary one, developed by dji [9]. It provides an onboard sdk, as well
as a guidance sdk. It requires some additional hardware.
On the other hand, there is an open source drone software platform called
DroneCode [10]. It offers a complete software suite for developing drone-based
applications and services. It consists of the following elements:

• QGroundControl, a ground station

• PX4, an open source autopilot

• MAVLink, a lightweigh message marshalling library for air vehicles

• DroneCore, a cross platform API for PX4 over MAVLink

PX4 autopilot requires additional hardware too, but it is cheaper than the one
required by the dji software. Furthermore, the recommended hardware, Pix-
Hawk 4 [11], can be easily integrated with onboard computers, specifically with
the intel NUC [8]. Once the drone can be automatically positioned, different
algorithms can be tested making use of the provided sdk.
Apart from drone positioning, computational load can be reduced by integrating
the Open Air Interface RRH implementation into the intel NUC. Besides, it
could provide higher flexibility, as several RRH can be controlled an served by
the same BBU.

References

[1] Openairairinterface project. http://www.openairinterface.org/. [On-
line; accessed 6-April-2018].

[2] Openair kernel main setup. https://gitlab.eurecom.fr/oai/

openairinterface5g/wikis/OpenAirKernelMainSetup. [Online; ac-
cessed 6-April-2018].

[3] Tarot. Web-page of drone manufacturer. http://www.tarot-rc.com. [On-
line; accessed 6-April-2018].

[4] Helipal. Shop page with airframe and other parts. http://www.helipal.

com/tarot-fy680-pro-hexacopter-frame-set.html. [Online; accessed
6-April-2018].

[5] Helipal. Shop page with esc and other parts. http://www.helipal.com/

hobbywing-xrotor-40a-esc.html. [Online; accessed 6-April-2018].

8

http://www.openairinterface.org/
https://gitlab.eurecom.fr/oai/openairinterface5g/wikis/OpenAirKernelMainSetup
https://gitlab.eurecom.fr/oai/openairinterface5g/wikis/OpenAirKernelMainSetup
http://www.tarot-rc.com
http://www.helipal.com/tarot-fy680-pro-hexacopter-frame-set.html
http://www.helipal.com/tarot-fy680-pro-hexacopter-frame-set.html
http://www.helipal.com/hobbywing-xrotor-40a-esc.html
http://www.helipal.com/hobbywing-xrotor-40a-esc.html


[6] Helipal. Shop page with motor and other parts. http://www.helipal.

com/tarot-4008-high-power-brushless-motor-380kv.html. [Online;
accessed 6-April-2018].

[7] DJI. Shop page with flight controller and its parts. https://www.dji.

com/naza-m-v2. [Online; accessed 6-April-2018].

[8] Intel nuc onboard computer. https://pixhawk.org/peripherals/

onboard_computers/intel_nuc. [Online; accessed 16-May-2018].

[9] Dji sdk. https://developer.dji.com/onboard-sdk/. [Online; accessed
16-May-2018].

[10] Dronecode. https://www.dronecode.org/. [Online; accessed 16-May-
2018].

[11] Pixhawk autopilot. https://pixhawk.org/modules/pixhawk. [Online;
accessed 16-May-2018].

9

http://www.helipal.com/tarot-4008-high-power-brushless-motor-380kv.html
http://www.helipal.com/tarot-4008-high-power-brushless-motor-380kv.html
https://www.dji.com/naza-m-v2
https://www.dji.com/naza-m-v2
https://pixhawk.org/peripherals/onboard_computers/intel_nuc
https://pixhawk.org/peripherals/onboard_computers/intel_nuc
https://developer.dji.com/onboard-sdk/
https://www.dronecode.org/
https://pixhawk.org/modules/pixhawk

	Introduction
	Communication Software Configuration
	LTE dongle configuration
	Configure IP routing
	Configure NAT in EPC 2
	MTU reconfiguration
	EPCs configuration

	Hardware Architecture
	Drone-parts and physical configuration
	Calibration and Getting Started
	ESC Calibration
	IMU and Compass Calibration
	Starting


	Future Work

