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Energy Consumption Optimization for UAV Base
Stations with Wind Compensation
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Abstract—In this letter, an energy-efficient algorithm for posi-
tioning of unmanned aerial vehicle-based base stations (UAV-BSs)
is presented. The objective is to reduce the propulsion power con-
sumption of UAV-BSs while not compromising the communication
capacity of user equipments (UEs). As a significant step beyond
state-of-the-art, we consider an effect of wind. To this end, we
develop a new model of a propulsion energy consumption for the
UAV-BSs reflecting an impact of wind. Furthermore, we propose
a novel algorithm based on an ensemble learning optimizing the
3D trajectory of UAV-BSs over time in realistic environment with
wind to reduce the propulsion energy consumption. The results
show that the proposed approach reduces the propulsion energy
consumption of UAV-BSs by up to 47% with only a negligible
degradation in the UEs capacity compared to state-of-the-art
works.

Index Terms—UAV base station, energy consumption, wind,
modeling, ensemble learning, machine learning

I. INTRODUCTION

The base stations mounted on unmanned aerial vehicles
(UAV-BSs) represent a promising solutions offering a con-
nectivity to user equipments (UEs) during emergency or
temporary peak traffic conditions. The major limitation related
to a deployment of the UAV-BS is the battery capacity and,
consequently, operational time. The available battery capacity
is shared mainly by communication (transmission power), and
flying (propulsion power).

Solutions targeting to reduce the transmission power of
UAV-BSs typically aim to determine positions of the UAV-
BSs. For example, in [1], the authors propose the optimal
UAV-BSs positioning based on the circle placement problem
to maximize the number of covered UEs. Furthermore, suc-
cessive convex approximation for the UAV-BS deployment
considering different transmission power allocated to the UEs
is adopted in [2]. Downlink power control for a fleet of UAV-
BSs is considered in [3]. However, in practical deployments
of the rotary-wing UAV-BSs, the transmission power is few
orders of magnitude lower than the propulsion power due to
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a highly dynamic and energy draining UAV rotors [4]. Hence,
the propulsion power optimization is a key challenge.

The propulsion power optimization is addressed, e.g., in [5],
[6], where the closed form solution for the UAV-BS trajectory
is derived. In [7], the authors adopt multi-agent reinforcement
learning to solve cooperatively the multi-criteria optimization
problem involving the propulsion power reduction. In real-
world outdoor applications of the UAV-BSs, a wind is always
present and a mutual relation of directions of the wind and
of the UAV-BS’s movement influence notably the propulsion
energy consumed by the UAV-BS. Nevertheless, up to our best
knowledge, there is no work that would analyze an impact of
the wind or even take an impact of the wind into account in
the UAV-BS’s trajectory design.

Hence, in this paper, we minimize the propulsion energy
consumption of the UAV-BSs serving stationary/slowly mov-
ing UEs. Unlike related works, we take the effect of wind on
the propulsion energy consumed by the UAV-BS into account.

The major contributions of our work are summarized as
follows. First, we propose the UAV-BS energy consumption
model in the presence of wind considering: i) the wind speed
and wind direction, ii) the UAV-BS physical configuration,
and iii) instantaneous UAV-BS velocity. Second, we predict
the sub-optimal trajectory, defined by the circle center, al-
titude, and flight radius, minimizing the propulsion energy
consumption and leveraging the wind via ensemble learning.
As shown in [5], hovering with (close to) zero speed results
in a significant propulsion energy consumption. Hence, the
circular trajectory is commonly considered due to complexity
and practical limitations on maneuvering of the UAVs, see,
e.g. [5], [8]. Last, we demonstrate a significant propulsion
energy saving reached by our proposed algorithm at the cost
of negligible capacity degradation compared to the state-of-
the-art algorithm maximizing the capacity.

II. SYSTEM MODEL

In this section, we introduce the generic model of the
system, communication model, and wind flow model.

A. Generic model of the system and environment

We consider 3D urban area A ⊂ R3 with buildings. The
buildings occupy an area defined by coordinates A′. Further-
more, N UEs are deployed at locations U = {u1,u2, ...,uN},
where un = [xn, yn, zn] ∈ Ao for ∀n ∈ ⟨1, N⟩ and
Ao = A−A′ represents the area, where the UEs and the
UAV-BSs can move. There are also M static base stations
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(SBSs) located on the rooftops of the buildings at coordinates
S = {s1, s2, ..., sM}, where sm = [xm, ym, zm] ∈ A′

for ∀m ∈ ⟨1,M⟩. Moreover, K UAV-BSs relaying data
from the SBSs to the UEs are also deployed in the area at
coordinates D(t) = {d1(t),d2(t), ...,dK(t)}, where dk(t) =
[xk(t), yk(t), zk(t)] ∈ Ao for ∀k ∈ ⟨1,K⟩ at the time t.

Realistic UAV-BSs are limited in maneuvering and their
movement should be smooth in terms of direction changes to
avoid a high energy consumption [5]. Therefore, we design the
circular trajectory, which approximates the optimal trajectory
sufficiently with only a minor impact on the performance
as demonstrated in [9]. Moreover, a minor deviation in the
position of UAV-BSs with respect to an optimal generic
shape of the trajectory has only a marginal impact on the
capacity of UEs [10]. We consider the circular trajectory
with radii r = [r1, r2, ...rK ] at the circle centers F =
[f1, f2, . . . , fK ] ∈ RK×3, where fk = [fk,x, fk,y, fk,z]. The
position of the k-th UAV-BS at the time t is, then, defined as
dk(t) = [fk,x − rk ∗ cosα(t), fk,y − rk ∗ sinα(t), fk,z], where
α(t) is the relative angle of the UAV-BS to the x-axis.

B. Communication models
We consider orthogonal downlink transmission to the UEs.

The capacity of the access channel (superscript a) between the
k-th UAV-BS and the associated n-th UE is expressed as

Ca
k,n =

B

N
log2

(
1 +

Pkg
a
k,nθ

a
k,n

B
N σ + I

)
, (1)

where B is the available bandwidth distributed equally among
N UEs, Pk is the transmission power of the k-th UAV-BS,
gak,n represents the access channel gain between the k-th UAV-
BS and the n-th UE, θak,n denotes the fading, σ represents the
noise density, and I is the interference from neighboring cells.

Analogously, the capacity of the backhaul channel (super-
script b) between the m-th SBS and the k-th UAV-BS reserved
for data of the n-th UE is defined as

Cb
m,k =

B

N
log2

(
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Pmg
b
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b
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B
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)
, (2)

where Pm is the transmission power of the m-th SBS, gbm,k

is the backhaul channel gain between the m-th SBS and the
k-th UAV-BS. We assume the equal bandwidth B

N allocated
for all UEs at both access and backhaul channels. This is a
reasonable assumption, since the bandwidth does not affect
the propulsion energy consumed by the UAV-BS.

For the UAV-BSs’ communication, half-duplex decode-and-
forward transmission is adopted. Hence, the capacity of the
channel between the m-th SBS and the n-th UE via the k-th
UAV-BS is determined as

Cm,k,n = min(T bCb
m,k, (1− T b)Ca

k,n), (3)

where T b ∈ [0, 1] is the normalized time scheduled for the
transmission over the backhaul channel and, analogously, (1−
T b) is the normalized time for the transmission over the access
channel. To avoid a bottleneck on either of these channels and
to maximize Cm,k,n, we assume [11]

Cm,k,n = T bCb
m,k = (1− T b)Ca

k,n, (4)

The average sum capacity of L UEs served by the k-th
UAV-BS and to the m-th SBS over the time τ is defined as

C̃k(fk, rk) =
1

τ

∫ τ

0

dt
1

L

L∑
l=1

(Cm,k,l(dk(t))). (5)

C. Wind flow model

We model the dynamic effects of the wind via a generally
recognized k − ϵ model based on the Reynolds Averaged
Navier-Stokes (RANS) equations [12]. The k−ϵ model consid-
ers the turbulent wind flow, as in an urban environment with
multiple obstacles in the wind path and uses time-averaged
equations of motion for wind. The wind flow distribution char-
acteristics in the space are, thus, determined by the reference
wind distribution vector I⃗ = [ix, iy, iz] measured at a reference
point (RP) randomly selected within the covered area. For each
discrete position a ∈ Ao, RANS provide an information about
the wind velocity w⃗a = [wx, wy, wz]. Time evolution of these
vectors is expressed as the time evolution of mean velocity
vector field (flow velocity) from the left side of the convective
form of the RANS equation, as defined in [12]. The k−ϵ model
provides us with the eddy viscosity as a function of the mean
flow and solves the RANS closure problem via Boussinesq
hypothesis, see [12]. In practice, the model of the environment,
where RANS is used to calculate the wind characteristics is
described through the finite volume method (FVM) using a
mesh. The sensitivity of the mesh η along with the number of
iterations ψ determine the accuracy of the model. η and ψ are
user-defined specific parameters [13].

The length of UAV-BS operational time (∼ minutes) is
sufficiently large compared to the length of turbulent time-
scales (∼ milliseconds) presented in the wind flow. In addition,
persistent reference wind distribution vector I⃗ = [ix, iy, iz] is
used in RANS. Hence, we can take an advantage of the wind-
flow averaged values provided by RANS for a prediction of the
UAV-BS trajectory instead of the instantaneous values, which
are affected by difficult to estimate small-scale turbulence in
practice [12].

III. MODEL OF UAV ENERGY CONSUMPTION WITH WIND

In this section, we introduce a novel model of the propulsion
energy consumption for the UAV-BS considering wind.

To derive a model suitable for the wind condition, let us
start with the model for the propulsion power consumed at
the speed Ṽ without wind, as introduced in [6]

P (Ṽ ) =P0

(
1 +

3Ṽ 2

V 2
tip

)
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blade profile

+Pi

√1 +
Ṽ 4

4v40
− Ṽ 2

2v20

1/2

︸ ︷︷ ︸
induced

+
1

2
d0ρsAṼ

3︸ ︷︷ ︸
parasite

, (6)

where P0, Pi, d0, and s are the UAV hardware specific
constants (see [6]), ρ defines the air density, Vtip = Rω is
the tip speed of the rotor blade for the blade angular speed ω
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and the rotor radius R, v0 represents the rotor speed induced
by forward flight, and A is the rotor disc area [6].

The model presented in [6] does not consider wind and its
impact on the energy consumption. Hence, we include wind-
related motion factors into the energy balance in following
way. Generally, the wind force Fw actuating on an effective
surface A of the UAV is calculated as Fw = 1

2ρw
2A. Let us

assume that the wind speed vector w⃗ results in the active force
on the UAV’s surface Aζ perpendicular to the unit normal
vector e⃗ζ , which, after substitution, constitutes a generic form
of the wind force F⃗ζ = 1

2ρ(wζ −Vζ)2sign(wζ −Vζ)Ane⃗ζ . The
subscript ζ represents x-, y-, or z-axis. The signum function
sign(.) covers the sign variability with respect to e⃗ζ .

Now, with the above definition of F⃗ζ , the UAV geometry
is reducible to a cylindrical symmetry along the vertical z-
axis. In this representation sufficient for aerodynamics, the
front surface Af and top/bottom surface Ab are supposed
to be the projections of the UAV’s surface Aζ . We further
assume the wind speed w⃗ = wxe⃗x + wye⃗y + wze⃗z expressed
by means of the orthogonal unit vectors e⃗x, e⃗y, e⃗z representing
the components of speed in each axis. By analogy, we suppose
that the speed of the UAV in the system related to a ground-
based observer is V⃗ = Vxe⃗x + Vye⃗y + Vze⃗z. The horizontal
speed components Vx and Vy define the respective forces in
x and y planes so that:

F⃗x =
1

2
ρ(wx − Vx)

2sign(wx − Vx)Af e⃗x , (7)

F⃗y =
1

2
ρ(wy − Vy)

2sign(wy − Vy)Af e⃗y .

Both forces F⃗x and F⃗y then introduce x–y in-plane force
F⃗xy(t) = F⃗x(t) + F⃗y(t) actuating on the front surface of
the UAV. F⃗xy(t) represents the horizontal motion with the
path with the projection s⃗xy(t) = s⃗x(t)+ s⃗y(t). Similarly, the
vertical force component F⃗z =

1
2ρ(wz−Vz)2sign(wz−Vz)Abe⃗z

is proportional to the projection of the bottom (up) surface Ab.
The considered model is depicted in Fig. 1.

The total propulsion energy of the k-th UAV-BS Ek = Ep+
Ef+Ez is the sum of: i) the energy Ep corresponding to the k-
th UAV power requirement to maintain motion at the speed V
for the total flight time τ , and ii) dissipated energy composed
of the energy of wind power actuating on the surfaces of the
k-th UAV relative to the forces Fxy and Fz for the front and
vertical kinetic energies Ef and Ez, respectively.

All three components of the total propulsion energy con-
sumption are computed by time integration of the related
powers, i.e., Ep =

∫ τ

0
dtP (V ), Ef =

∫ τ

0
dtF⃗xy(t) · (ds⃗xy(t)dt )

and Ez =
∫ τ

0
dtF⃗z(t) · (ds⃗z(t)dt ), where s⃗z(t) represents the

pathway projection along e⃗z to the energy consumption.

IV. PROBLEM FORMULATION

The objective is to minimize the propulsion energy con-
sumption of the UAV-BSs via a determination of the UAV-
BS trajectories. Due to real-world limitations imposed on
the trajectories, as explained in Section II, our goal is to
determine the circular trajectories including their centers;
F∗ = [f∗1 , f

∗
2 , . . . f

∗
K ] for all UAV-BSs and respective radii
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Fig. 1. Model showing wind forces actuating on UAV-BS and speed vector,
trajectory, and backhaul/access channels of UAV-BS.

r∗ = [r∗1 , r
∗
2 , ..., r

∗
K ]. The energy saving optimization problem

is, thus, defined as

F∗, r∗ = argmin
F,r

K∑
k=1

Ek, (8)

s.t. (f∗k ) ∈ Ao, ∀k ∈ {1, 2, . . . ,K} (a)

f∗k,z ∈ ⟨zmin, zmax⟩, ∀k ∈ {1, 2, . . . ,K} (b)

r∗k ∈ ⟨rmin, rmax⟩, ∀k ∈ {1, 2, . . . ,K} (c)

C̃k(f
∗
k , r

∗
k) ≥ (1− γ)C̃k(f

′

k, r
′

k),∀k ∈ {1, 2, . . . ,K}. (d)

The constraint (a) defines the set of all possible locations
Ao in the area excluding buildings and obstacles, where the
presence of UAV-BSs is not allowed. The constraint (b) defines
the range of possible UAV-BS altitudes and the constraint (c)
defines the range of possible flight radii. The constraint (d)
ensures that the average capacity C̃k(f

∗
k , r

∗
k) does not drop

below (1 − γ)C̃k(f
′

k, r
′

k), where γ represents the maximum
relative allowed decrease in the capacity of UEs with respect
to the set of UAV-BSs’ positions F′ = [f

′

1, f2
′, . . . , fK

′] and
set of radii r

′
= [r

′

1, r2
′, . . . , rK

′] maximize the UEs capacity
neglecting the energy consumption. Hence, the constraint (d)
poses a capacity guarantee on the energy saving optimization
problem to ensure the capacity degradation is negligible and
within a tolerable limit.

The optimization problem formulated in (8) is typical
quadratic programming problem with embedded numerical
evaluation of partial differential equations represented by the
RANS equation with subject to linear constraints on the vari-
ables using FVM. The time complexity of the FVM solution
is O(η log(η)), where η is the mesh sensitivity characterizing
FVM environment. The FVM approximates values by a time
evaluation in ψ discrete time steps, so the complexity becomes
O(η log(η)ψ) [13]. The cost function in (8) is, thus, extremely
computationally expensive, as it includes the evaluation of the
UAV-BSs energy consumption in each discrete point of their
trajectories by leveraging FVM. Hence, we adopt machine
learning to overcome huge complexity and to make the so-
lution feasible for practical applications.

V. PROPOSED SOLUTION FOR UAV-BS TRAJECTORY
DESIGN WITH WIND CONSIDERATION

In this section, we first determine the theoretical minimum
energy consumption. Then, we propose the solution to problem
(8). The solution is based on the ensemble learning adopted to
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Fig. 2. Ensemble learning approach to determine energy-efficient UAV-BS
trajectory. Three base learners (DNN, KNN, RF) are fed with capacity-
maximizing UAV-BSs’ positions F′ and wind information I⃗ at the RP.

predict the sub-optimal energy efficient positions of the UAV-
BSs F and respective radii r.

To identify the theoretical minimum energy consumption
of UAV-BSs as defined in (8), we adopt the exhaustive search
deriving the optimum F∗ and r∗ by testing all possible options
of the UAV-BSs deployment (taking the constraints a, b, and
c into account) and selecting the one leading to the minimum
energy consumption while fulfilling the capacity constraint d.
For practical applications, the exhaustive search is not feasible
due to a huge computational complexity. Thus, we also solve
(8) as the prediction problem via ensemble learning, where F∗

and r∗ are used only as the targets in the training phase and
their computation online is not required.

The ensemble learning typically combines several base
learners to improve prediction performance in regression
problems compared to standalone predictors. We adopt the
heterogeneous set of learners Fo = f̂i, i = {1, 2, . . . ,H},
where H = 3, as shown in Fig. 2. In the proposed solution, we
use a deep neural network (DNN) in combination with tradi-
tional random forests (RF) and K-nearest neighbors (KNN) to
build heterogeneous ensemble enjoying the benefits of a lower
computation cost (shallow DNN and relatively low computing
requirements of RF and KNN) and higher diversity potentially
leading to a performance improvement [14]. Besides, the
individual base learners are characterized by a high sensitivity
to the dataset samples and even small changes in the training
samples could result in large changes in the predicted output
in our problem. However, when combined into the ensemble
learning, the base learners are able to produce error lower than
that of the single classifier [14].

The feature vector for the ensemble learning is identical for
all three base learners and consists of F′, determined via any
existing algorithm for positioning of the UAV-BSs to maximize
the capacity, and wind information at the RP I⃗ = [ix, iy, iz]. At
the deployment stage, the ensemble output is implemented as
the average of base learners, i.e., [F, r] = 1

H

∑
i∈F f̂i[F

′, I⃗].
The hyperparameters of the base learners are identified us-

ing the grid-search optimization. The DNN predictor consists
of three hidden layers with 30, 40, and 40 neurons respectively,
employing ReLU activation function. RF reaches the highest
performance, when the number of estimators is set to 160 and
the maximum depth equals to 13. For the KNN, the number of
neighbors is set to the number of UEs N divided by a desired
number of UAV-BSs K.
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Fig. 3. Example of simulation setup with buildings (black squares), UEs
positions (orange dots), SBS positions (red triangles), reference point (RP),
capacity-max positions of UAV-BSs derived according to [15] (red crosses and
circle trajectory) and UAV-BSs positions computed by the proposed approach
(blue crosses and circle trajectory). The wind speed velocity is represented
by the green heatmap with zoomed detail encompassing average wind speed
vectors at given positions. Note that z-axis omitted for clarity.

VI. PERFORMANCE ANALYSIS

In our simulation setup, we consider a rectangular urban
area with a size of 1 × 1 km with 8 buildings of different
heights. We consider five SBSs located in random positions
on the buildings. The UEs are located randomly following the
Binomial point distribution. We consider B = 20 MHz and
spectral density of noise of −174 dBm/Hz. The transmission
powers of the SBS and the UAV-BS are equal to 46 dBm
and 30 dBm, respectively. Path loss model for line of sight
(LoS) channels is in line with [15]. For non-LoS channels,
an attenuation of walls/obstacles is added on the top of LoS
attenuation as in [15]. Fast fading components are generated
as exponentially distributed random variables with unit mean.
The simulation outputs are averaged out over 10 000 runs.

The exhaustive search to determine the minimum energy
consumption is performed in a discrete space with a step size
of 1 m. Finally, the capacity deterioration parameter introduced
in (8d) is set to γ = 0.03.

We consider the UAV-BSs represented by the DJI spreading
wings S900 model with the shape and HW characteristics
given in the specification manual1. The visualization of the
area considered in our simulation setup is given in Fig. 3.

We compare performance of our proposal with two baseline
schemes: i) exhaustive search (labeled as lower-bound) provid-
ing F∗ and r∗, and ii) state-of-the-art algorithm maximizing
capacity using DNN, as proposed in [15] (labeled as capacity-
max). Note that the capacity-max algorithm does not account
for the wind effect in the trajectory design.

As the performance metrics, we adopt the propulsion aver-
age energy consumption E as defined in Section III and the
sum capacity defined in (5).

Fig. 4a shows notable energy savings of roughly 47%
introduced by the proposed approach with respect to the
capacity-max solution for the average wind speed |w⃗| = 10
ms−1 despite the number of UEs deployed in the system. Such
savings are expected, since the capacity-max does not consider
wind in the trajectory design and, hence, the UAV-BSs copes
with potentially strong wind forces during flight. The energy

1http://dl.djicdn.com/downloads/s900/en/S900 User Manual v1.2 en.pdf



IEEE COMMUNICATIONS LETTERS, VOL. XX, NO. XX, XX 202X 5

saving is almost constant disregarding the number of UEs. The
standalone base learners show a slight performance degrada-
tion compared to the proposed approach. Hence, a diversity
among the base learners results in a superior performance of
the proposed ensemble learning. In Fig. 4b, we plot the average
sum capacity vs. number of UEs deployed in the system
for the average wind speed |w⃗| = 10 ms−1. The proposed
solution almost matches the performance of the capacity-
max algorithm (loss below 0.3%) despite the number of UEs.
The standalone base learners show a bit larger performance
degradation of about 1.2%, 1.4%, and 2% for DNN, KNN,
and RF, respectively.

Furthermore, in Fig. 5a, we show the average propul-
sion energy consumption over the varying wind speed. The
capacity-max algorithm with no wind compensation is char-
acterized by an increasing energy consumption with the wind
speed. Contrary, our proposed approach and base learners
take advantage of the turbulent wind flows by adjusting the
trajectories resulting in a decreasing energy consumption with
an increasing wind speed. Consequently, the energy saving by
our proposal with respect to the state-of-the-art capacity-max
algorithm becomes more significant with higher wind speed
and the proposed approach achieves 47% energy savings for
the wind speed |w⃗| = 10 ms−1. Besides, the proposal provides
almost identical performance compared to the computationally
complex lower-bound with difference always below 2%. The
energy consumption of the base learners is up to 8% worse
compared to the ensemble learning. Finally, in Fig. 5b, we
observe the proposed algorithm almost matches (difference be-
low 0.05%) the sum capacity of the lower-bound and capacity-
max across all investigated wind speed characteristics. The
base learners show a larger deterioration between 1.37 and
2.75%.

VII. CONCLUSIONS

We have introduced new analytical model of the UAV-BS
propulsion energy consumption taking the wind into account
in order to express the energy consumption at the presence
of the turbulent wind flows. Furthermore, we have proposed a
novel 3D positioning of UAV-BSs leveraging the wind flow
distribution to reduce the propulsion energy consumption.
The proposed solution is based on the ensemble learning
consisting of three base learners. The simulations show that
the proposal reduces the energy consumption significantly (up
to 47%) while the sum-capacity is deteriorated only negligibly
compared to the state-of-the-art work neglecting the wind.
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