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Abstract—The Multi-Access Edge Computing (MEC) consti-
tutes computing over virtualized resources distributed at the edge
of mobile network. For mobile users, an optimal allocation of
communication and computing resources changes over time and
space, and the resource allocation becomes a complex problem.
Moreover, for delay constrained applications, the resource allo-
cation to mobile users cannot be solved by approaches designed
for static users, as a solution would not be obtained within a
desired time. Thus, in this paper, we propose a low-complexity
computing and communication resource allocation for offloading
of real-time computing tasks generated with a high arrival rate
by the mobile users. We exploit probabilistic modeling of the
users’ movement to pre-allocate the computing resources at base
stations and to select suitable communication paths between the
users and the base station with the pre-allocated computing
resources. The simulations show that the proposed algorithm
keeps the offloading delay below 100 ms for the small tasks even
with the arrival rate of five tasks per second per user, while the
state-of-the-art algorithms can handle only up to 0.5 tasks per
second per user. Thus, the proposal enables an exploitation of
the MEC for various real-time applications even if the users are
moving.

Index Terms—Mobile Networks, Multi-access Edge Comput-
ing, Offloading, Mobility management, Resource allocation, Pre-
diction, Real-time

I. INTRODUCTION

INCREASING requirements on computing capabilities of
mobile devices motivate a convergence of communication

and computing to a single concept of Multi-access Edge
Computing (MEC) [1], also known as Mobile Edge Computing
[2]. The MEC can exploit communication over multiple types
of wireless technologies, such as LTE-A, LTE-A Pro, 5G, or
WiFi. The concept of MEC further evolves Mobile Cloud
Computing (MCC) [3] by moving computing resources to
the edge of mobile network, i.e., to base stations (gNBs),
small cells, remote radio heads, etc. [4]. Therefore, a com-
munication delay between a user equipment (UE) and its
allocated computing resources in the MEC is, in principle,
lowered in comparison to the MCC [5], [6]. Moreover, the
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MEC reduces a backhaul load of the gNBs, since the UEs’
data is processed directly in a MEC server located close to
(or even at) the gNBs without a need to forward the UEs’
data to a centralized computing server farm via the backhauls
of the gNBs. Thus, the MEC provides a low offloading delay
for many applications, such as content caching, augmented or
virtual reality applications [7], vehicular networks [8], Internet
of Things [9] or Industrial Internet of Things [10]. However,
running computation demanding real-time applications, such
as augmented reality, virtual reality, or games on mobile
devices is possible only with radio resource and mobility
management guaranteeing strict requirements on the offloading
delay.

The processing of the UEs’ applications in the MEC exploits
virtualized computing resources in a form of either containers
[11] or Virtual Machines (VMs) [12]. Both the VMs and
the containers exploit physical computing resources, such as
computing time of Central Processing Unit (CPU) or Random
Access Memory (RAM), and virtualize them. In the case
of containers, the virtualized resources are provided by the
containers sharing host’s Operating System (OS). In the case
of VMs, the physical computing resources are virtualized by
a hypervisor running either on the host OS or directly on
the host hardware. Therefore, the VMs and the host OS are
completely isolated from each other. This isolation provides a
certain level of security, but the security comes at the cost of an
additional overhead [13]. The overhead affects a performance
and a startup time of the VMs and makes the VMs less efficient
comparing to the containers [14], [15].

An application to be processed in the MEC, denoted as the
offloaded application in this paper, is run on the virtualized
resources (VMs or containers). The UE sends data to be
processed (denoted as the offloaded task) to the offloaded
application in the MEC. For example, the offloaded task by
an augmented reality application contains information on the
UE’s position, its cone of vision, etc. [16].

The offloading process is not always feasible or beneficial
due to latency constraints, computation complexity, energy
consumption, or memory requirements [17]. Thus, the offload-
ing process is preceded by a decision whether to offload or not
[17], [18], [19]. If this decision is positive, the whole offload-
ing process goes through the following stages: i) transmission
of the offloaded task to the MEC server where the computing
resources are allocated, ii) processing of the offloaded task by
the offloaded application running over the allocated computing
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resources, and iii) transmission of the computing results back
to the UE. Each stage introduces a delay contributing to the
overall offloading delay perceived by the UEs. Note that we
assume that the MEC server is collocated with the gNB as
outlined in, e.g., [20], [21]. Apart from the offloading delay,
also an energy consumed at the UE for the offloading itself (in
this paper denoted as the offloading energy) can be considered
in the offloading decision [17], [22], [23], [24], [25].

To guarantee that the offloading delay meets the require-
ments imposed by the offloaded application, the communi-
cation and computing resources should be allocated jointly.
If the MEC is serving static UEs, the VM can be kept at a
single gNB during the whole offloading process. However, for
the moving (mobile) UEs, the resource allocation complexity
becomes significant, as the resources should be reallocated
over time to adapt to the changes in quality of communication
channels (due to UE mobility) and to an availability of the
computing and communication resources. The allocation of
the communication and computing resources can be adapted
to the UE mobility via the UE mobility and channel quality
prediction [26], [27]. However, these works do not address
joint communication and computing resource allocation.

The UE’s mobility can be handled by moving the virtualized
resources allocated to the UE from the MEC server collocated
with one gNB to another. This process is known as a VM
migration or a container migration [28]. The VM migration
consumes relatively long time [14] and can even lead to
a service interruption, thus, it is not suitable for real-time
services. The mobility of the UEs can be also facilitated by
a selection of a new communication route, represented in
mobile networks by a selection of new gNB that delivers the
computation results to the UE [29], [30], [31]. However, even
this approach cannot guarantee a low offloading delay if the
connection among the gNBs is not of a very high quality.
Another option of the mobility support is to deploy an entirely
new VM at the new gNB and start the computing over [32].
This approach is denoted as a VM deployment. A similar
approach is possible for the containers, which can exploit
their advantage of a lower startup time compared to the VMs
[14]. For the containers, the process is denoted as a container
deployment [11]. The deployment of the new VM or container
at another gNB, however, leads to a wasting of energy and the
computing resources of the MEC servers. Consequently, the
performance of such approach becomes limited in scenarios
with a heavy computation load.

None of the above mentioned papers provides a solution that
allows an efficient computing and communication resource
allocation for the mobile (moving) UEs exploiting the real-
time applications with a high arrival rate of the offloaded
tasks. Therefore, in this paper, we focus on a computing
and communication resource allocation for the moving UEs
exploiting real-time applications with a high arrival rate.

The contribution and novelty presented in this paper are
summarized as follows:
• We propose a novel algorithm for the dynamic communi-

cation and computing resource allocation (DCCRA) for
MEC systems. Unlike the existing works, we target the
offloading of the real-time applications by the moving

UEs. Such scenario implies requirements on a very low
offloading delay and a consideration of an impact of
UEs’ handover (in terms of the communication) and VM
migration (in terms of the computing). We solve the
offloading via two cooperating sub-algorithms, one for
the dynamic selection of the communication path (i.e., the
gNB that serves the UE) and one for the VM placement.

• To facilitate the proposed DCCRA, we develop a frame-
work for a realistic and practical prediction of the UE’s
mobility and the channel quality based on a probabilistic
model of the UE’s movement. The mobility prediction is
first illustrated in a scenario with one degree of mobility
freedom and, then, we generalize it for multiple degrees
of mobility freedom. The UE’s mobility prediction is,
afterwards, exploited for an efficient allocation of the
communication and computing resources.

• Via simulations, we show that the proposed algorithm
enables the offloading of the real-time applications by the
mobile UEs and keeps the offloading delay under 100
ms even for a high arrival rate of up to five tasks per
second per UE. Such performance is notably superior to
the existing works and it facilitates an exploitation of the
MEC services by the real-time applications even for the
moving UEs. Furthermore, we show that the performance
of the proposed solution in terms of the offloading delay
and the energy consumption of the UEs is significantly
improved comparing to the existing solutions and it is
even close to the case with a perfect prediction of the
channel quality.

The rest of this paper is organized as follows. In the next
section, related work in the area of MEC resource allocation
is presented. In Section III, the resource allocation problem
is formulated and assumptions along with a system model
are described. In Section IV, the framework for the mobility
and channel prediction suitable for the proposed resource
allocation is outlined. The proposed resource allocation al-
gorithm is defined in Section V. Then, in Section VI, the
environment and models for simulations are presented, and the
simulation results are discussed in Section VII. Last, Section
VIII concludes the paper and outlines future work.

II. RELATED WORK

This section describes related work in the area of resource
allocation for the MEC services in scenarios with static and
mobile UEs.

The problem of joint computing and communication re-
source allocation for the MEC services can be solved by an
iterative algorithm as proposed in [33]. An extension of the
iterative algorithm towards a distributed solution, which can be
run on each gNB separately is presented in [34]. In [34], the
authors show that the performance of the distributed solution is
close to the centralized one while collection of all information
at the central control node in the network is not required.
The computing and communication resource allocation with an
interference management is proposed in [35]. The developed
offloading decision is followed by a resource allocation with
interference management exploiting graph coloring. In [36],
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the authors design two solutions for an optimal VM placement,
based on the integer linear programming, to minimize the
number of pre-allocated VMs and the degradation of quality of
experience. The energy consumption of the UEs is considered
in [37] and [38]. The authors of [38] formulate the resource
allocation problem as a convex optimization problem for
a minimization of the UEs’ energy consumption under a
constraint on the computation latency and on the fairness of
resource allocation. Then, an optimal policy for the resource
allocation is derived. The UE’s energy consumption is further
minimized via exploitation of the Non-orthogonal Multiple
Access (NOMA) in [39]. Communication resource allocation
is considered in [40], where the authors exploit device-to-
device communication of mobile UEs. However, the authors
assume that the UEs and their channel quality are static during
offloading. In [41], the authors propose a Q-learning-based
algorithm for the resource allocation. The algorithm learns
how to allocate the resources, and allocates these resources
based on the actual state of the VM. Furthermore, in [42],
the authors consider also a content caching for the resource
allocation in order to improve the performance of the MEC.
The caching is exploited to keep the content requested by the
UE at the gNB to alleviate the gNB’s backhaul. The authors
formulate their optimization task as a convex problem, which
is then transformed into a distributed convex optimization
problem.

All the above-mentioned papers [36], [33], [34], [35], [37],
[38], [39], [42], [41] focus on the static UEs or the UEs
with a very low mobility. However, a support for the mobility
management of the UEs during the offloading is a key feature
required to ensure seamless exploitation of the MEC services
[43]. The solutions developed for the static UEs in [36], [33],
[34], [35], [37], [38], [42] cannot be easily extended to support
the UEs’ mobility as the VM placement would have to be
determined every time the UEs’ positions change. Similar
approach for determination of an optimal VM placement every
time the UEs’ positions change is considered in [44]. The
authors exploit only the computing resources of the UEs. This
is, however, not an easy task (if not infeasible) for the moving
UEs due to the computation complexity of these algorithms.

To handle the UE’s mobility in the MEC, dynamic algo-
rithms are required. The dynamic algorithms based on the VM
placement and considering the mobility of UEs are outlined,
e.g., in [45] and [46]. The VM is migrated to a new gNB
whenever the UE changes its serving gNB. This means that
the VM is migrated to remain in a proximity of the UE in order
to reduce the communication delay. A similar solution, which
decides whether and where to migrate the VM is proposed in
[47]. The authors consider the Euclidean distance as a sole
metric for the decision on the VM migration. This work is
further enhanced in [48], where a mobility prediction with a
fixed accuracy is assumed, and the computation load of the
gNB is considered as the decision metric on the top of the
Euclidean distance. Another approach for the decision on the
VM migration exploiting mobility prediction is presented in
[49], where the authors propose a Q-learning-based algorithm
determining the time when the VM migration should be
started. The prediction of the UEs’ mobility is critical for

the VM migration, since the migration is both computation
and communication resource demanding. Therefore, the VM
migration-based solutions, exploited in [45], [46], [47], [48],
[49] impose a significant delay (in order of seconds), which
prevents their exploitation for the real-time applications [50].

The requirement of a low delay for real-time applications
can be handled by a pre-allocation of the virtualized resources
(in the form of VM or containers) [51]. The VM pre-allocation
for handling the UEs’ mobility is exploited in our prior work
[52], where the algorithm dynamically allocating computing
and communication resources for the computation offloading
is proposed. In [52], it is assumed that the VMs are pre-
allocated on all gNBs. This is, however, a limiting factor for
the real networks as it introduces redundant reservation of
the gNBs’ CPU, memory, and storage space, leading to high
requirements on the deployed hardware making the solution
impractical. Moreover, although the prediction with the fixed
accuracy is considered in our prior work [52] and in [48],
such assumption is too strong for realistic scenarios. Thus, we
develop a solution for the prediction of mobility and channel
quality suitable for the proposed resource allocation algorithm,
which can work even under unreliable mobility and channel
predictions. The mobility prediction for MEC is exploited in
several existing works, such as [22], [26], [27], [53], [54],
[55], [56], [57]. However, these works, in comparison to the
proposed solution do not exploit the channel quality (data rate)
prediction. Moreover, computing resource allocation is not
considered in [22], [26], [53], [55], communication resource
allocation is not considered in [27], [54], [56] and the authors
of [57] do not consider impact of handover and VM migration.
The proposed algorithm is motivated by a need for a low
complexity solution allowing the resource allocation and VM
management for the mobile UEs exploiting the real time
applications, as emphasized in [36] and [43].

III. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we define the system model exploited for
the proposed algorithm, we formulate the computing and
communication resource allocation problem for the offloading,
and we summarize the main assumptions for the resource
allocation algorithm.

A. System Model

We consider a set ( = {B1, B2, . . . , B" } of the gNBs and a set
* = {D1, D2, . . . , D# } of the UEs. The serving gNB for the UE
at the discrete time C, denoted BC ∈ (, is selected as the gNB
providing the highest Received Signal Strength (RSS). As the
UE moves, the serving gNB is updated following a conven-
tional hard handover procedure based on the RSS considering
also a handover interruption with a duration of C�$. This
means that the serving gNB is updated if there exists the gNB
B′ ∈ (, where B′ ≠ BC , for which '(((B′) > '(( (BC ) + Δ�$,
where Δ�$ is the handover hysteresis (see, e.g., [58] for more
details about the conventional hard handover and hysteresis in
mobile networks). Based on the serving gNBs determined for
the UEs, we define ='C (B) as the number of UEs sharing the
radio communication resources of the B-th gNB at the time C,
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Fig. 1. MEC system model with one mobile UE.

respectively. Furthermore, in a similar way, we define =�C (B)
as the number of UEs sharing the backhaul communication
resources of the B-th gNB at the time C, respectively.

Then, we define B∗C ∈ ( as the gNB where the VM or the
container for the UE is placed at the time C. We assume the
possibility to pre-allocate the VMs or the containers on mul-
tiple gNBs to alleviate the issue of an unreliable mobility and
channel predictions. Nevertheless, only one VM or container
is exploited by the application offloaded by each UE at any
given time. The time required to start the VM at the gNB is
denoted as C+ " . This time includes the VM pre-allocation and
the time required to start the processing of the offloaded tasks.
Next, we define lC (B) as the amount of available processing
resources of the B-th gNB in Millions Instructions Per Second
(MIPS) at the time C. Then, the requirement on computing
resources (in terms of MIPS) of the application offloaded by
the D-th UE is labeled as l(D). The B-th gNB is considered
for the VM placement of the D-th UE at the time C only if the
following condition holds:

lC (B) > l(D). (1)

Note, that the offloaded application resource requirements
are not limited to the computing power, but also memory
and/or hard drive capacity are considered. These resource
requirements can be formulated in the same way as for
the computing power requirements and an extension of the
condition (1) to these parameters is straightforward. Therefore,
without loss of generality and in order to keep our notation
simple, we consider (1) as the only resource restriction of our
problem. The MEC system model with the gNB communica-
tion and computing load is shown in Fig. 1.

The offloaded task is defined by the amount !O of offloaded
data (in bits), the amount !C of collected data representing
the computation results (again in bits), and the number !P of
instructions of the offloaded task to be executed at an gNB.
The offloaded tasks are generated by the offloaded application
with a task arrival rate _, representing the number of offloaded
tasks generated per second. The offloaded task can be delivered
from the UE to the computing gNB directly via radio if BC = B∗C
or indirectly via the serving gNB BC , if the serving gNB is

different from the computing gNB B∗C , i.e., if BC ≠ B∗C . The
latter case can appear, for example, in the situation when the
serving gNB is not able to offer a sufficient computing power
to the UE. The latter case assumes to exploit the backhaul
connections of the B∗C and the BC for a transfer of the offloaded
task between the serving and the computing gNBs. Note that
the backhaul communication between the BC and the B∗C is
assumed to be routed via an operator’s core network as it
is done in conventional mobile networks [59], [60].

Furthermore, we define the set &C (D) ⊆ ( as the subset of
all gNBs with which the D-th UE can communicate at the time
C. In particular, this set contains only the gNBs to which the
UE has Signal to Interference plus Noise Ratio (SINR) above a
minimum SINR level required for the wireless communication
((�#'<8=). For the communication between the UE and the
serving gNB, we assume LTE or 5G-based radio interface with
radio resources shared equally among all UEs connected to the
same gNB. Thus, the radio communication data rate between
the D-th UE and the B-th gNB is calculated as:

2C (D, B) = aDdD
='� (B)
='C (B)

, (2)

where aD is the number of bits per symbol for a given
modulation scheme, dD is the code rate used for the radio
communication between the gNB and the D-th UE, and ='� (B)
is the number of Resource Blocks (RBs) available at the B-th
gNB. Both aD and dD are derived from the channel quality
according to the SINR of the D-th UE (see [61] for more
details).

When BC ≠ B∗C , the data rate expected on the backhaul
connection between the serving gNB BC and the computing
gNB B∗C (see Fig. 1) is defined as:

2C (B, B∗) = <8=
{

2B

=�C (B)
,

2B∗

=�C (B∗)

}
, (3)

where 2B and 2B∗ denote the available backhaul capacity of
the serving gNB BC and the computing gNB B∗C , respectively.
Note that the "min" in (3) indicates that different data rates
can be expected on the backhauls belonging to BC and B∗C .

The communication data rate available for a delivery of the
offloaded task from the UE to the B∗C either directly via radio
(if BC = B∗C ) or indirectly via the radio of BC and the backhauls
of BC and B∗C (if BC ≠ B∗C ) is derived as:

2*!C (D, B, B∗) =
{
2C (D, B) if BC = B∗C
<8= {2C (D, B) , 2C (B, B∗)} otherwise

. (4)

B. Problem Formulation

Our objective is to find an allocation strategy of the com-
puting and communication resources that minimizes the total
offloading metric, represented by the offloading delay. Thus,
the objective is to find the resource allocation strategy that
minimizes the total offloading delay for the UE (denoted
as CMEC). Minimization of the total offloading delay enables
offloading of the real-time tasks, as these tasks require a very
low delay. The total offloading delay consists of:
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i) the time required to deliver the offloaded task from the
UE to the gNB that starts the computation, determined as:

CO =
!O

2*!C (D, B, B∗)
, (5)

ii) the time required to process the offloaded task, calculated
as:

CP =
!P

lC (B∗)
, (6)

iii) the time required to deliver the processed data from the
gNB that finishes the computation to the UE, defined as:

CC =
!C

2�!C (D, B, B∗)
, (7)

with data rate 2�!C (D, B, B∗), derived in line with (4), but for
the downlink, as the results of computation are received by
the UE,

iv) the time consumed by the handover process, defined as:

CH =

=H∑
8=1

C8HO, (8)

where C8HO is the duration of the 8-th handover and =H is the
number of handovers due to the UE changing serving gNB.

v) the time of the VM starts (including obtaining UE’s appli-
cation which processes offloaded tasks) during the offloading,
determined as:

CM = =VMCVM, (9)

where =VM is the number of VM starts (equal to 0 if no VM
starts is needed or VMs are pre-allocated) taking place during
the offloading process. Note that the gNB that receives the
offloaded data and the gNB that delivers the results back to
the UE may not be the same due to the UE’s mobility. The
total offloading delay experienced by the UE is then calculated
as:

CMEC = CO + CP + CC + CM + CH. (10)

We can treat the minimization problem as a pair of joint
problems. The first problem is the determination of the se-
quence of gNBs {B∗C }

opt
C , where the VM (or the container)

should be placed for the D-th UE at each time C. The second
problem is the selection of the communication path, identi-
fied with the serving gNBs sequence {BC }opt

C . Merging both
problems, we formulate the objective as:{

B∗C
}opt
C
, {BC }opt

C = argmin
{B∗C ∈(}C , {BC ∈( }C

CMEC. (11)

However, solving (11) is, in general, difficult and impracti-
cal as both computing and communication resource allocation
have to be done together for each C leading to a complex
problem. Furthermore, the offloading delay (10), consisting
of the time to offload the task (5) and the time to collect
the processed results (7), depend on the data rates defined
in (4). These data rates are not always known and should
be predicted. This complicates the possibility to reach the
global optimum. Moreover, finding the global optimum at each
C leads to allocation of the computing resources (VMs) at
different gNBs due to variation of the channel quality over

time. Exploiting the VMs on different gNBs then leads to a
high number of VM starts (=" ) and handovers (=� ) as shown
in [52]. Thus, even though the global optimum is known, it
may be impossible to reach it in practice, as the VMs would
be constantly started over and over again.

Since the problem (11) is impractical and cannot be directly
solved, we simplify the problem and transform it into the
maximization of the communication data rate 2*!C (D, B, B∗)
due to the constant !O and !C, while considering (1), (3),
(4), and (10). We focus on the uplink communication rate,
because the uplink is commonly assumed to be of a lower
data rate than the downlink. The extension to consider the
downlink communication rate is trivial and we leave it out to
simplify the notations. Therefore, we transform the problem
into the following:

{
B∗C

}opt
C
, {BC }opt

C = argmax
{B∗C ∈(}C {BC ∈( }C

{2C (D, B, B∗)}C (12)

s.t. lC (B∗) > l(D). (13)

where the constraint (13) is defined to avoid placing the VMs
on the gNBs, which do not have enough computing power
to host the VM for the UE. The constraint (13) considers
computing power of the gNBs, since each gNB can have
different computing power. Since

{
B∗C

}opt
C

and {BC }opt
C can

be different, the transformed problem can be solved as two
subproblems via two proposed cooperative algorithms.

C. Assumptions

In this paper, we assume that every task is offloaded, as
assumed in [48]. The assumption of offloading every task
represents the case of the UE that does not have enough
computing resources to process tasks itself and is forced to
offload them. Note that introducing the offloading decision,
such as in [62], simply leads to a lower amount of tasks to
be processed in the MEC servers, as only some tasks would
be offloaded. Thus, the proposed solution is applicable to any
offloading decision algorithms and its impact on performance
is proportional to changes in the task arrival rate _ investigated
later in the paper.

In [48] and [52], the authors suppose that the communica-
tion data rate is predicted with a pre-defined fixed accuracy,
but this assumption is quite strong. More realistically, here, we
assume that the prediction accuracy is unknown and varies in
time, or even that a prediction is unavailable at all. This reflects
the unreliability of the UEs’ mobility prediction strategies,
even when they are based on a significant amount of infor-
mation about the UEs [63]. A suitable approach is to exploit
probabilistic models or probabilistic-free models as in [64].
To design and implement such approach, we assume that the
knowledge of users’ contextual information, such as scheduled
meetings, favorite places, etc. as exploited, e.g., in [63], [64]
is not available. Such assumption complicates the prediction
and potentially negatively impacts on the performance of the
developed algorithm. However, this assumption is motivated
by questionable willingness of the users to provide this type
of information to the network operator due to privacy issues.
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Thus, we expect the availability of only the information that
is typically available to the network or which is commonly
shared by the users. More specifically, we exploit anonymized
UEs positions and SINR at those positions. As this type of
information can be easily anonymized, the privacy risks are
significantly lowered with respect to [63], [64].

For clarity and simplification of explanation, we assume the
architecture where the MEC servers are collocated with the
gNBs as proposed in [20], [21]. Note that a placement of the
MEC servers to other network nodes, such as core network
elements, increases CO and CC. Since the proposed algorithm
considers CO and CC in terms of the communication data rate, it
can be simply extended to consider also different placements
of the MEC servers. However, this extension is omitted here
for the sake of clarity.

The data of the offloaded task are processed via an UE
application in the MEC. For this, we assume, that the UE’s
application at the MEC server (represented by a gNB or
SCgNB) is obtained from a cloud storage during the VM start
time.

IV. MOBILITY AND CHANNEL QUALITY PREDICTION

To solve the problem formulated in the previous section,
we develop the mobility and channel quality predictions with
a low complexity to derive the expected communication data
rate. The predicted data rate is then exploited by the proposed
computing and communication resource allocation algorithm.
Note that the main novelty of this paper is the computing
and communication resource allocation, while the mobility
and channel quality prediction are tools designed to fit the
needs of the proposed computing and communication resource
allocation. The effectiveness of different mobility prediction
approaches depends on the application scenarios. Therefore,
we split the description of the mobility prediction into two
cases with: i) one degree of mobility freedom (e.g., movement
along a sidewalk or street with no possibility to turn away),
and ii) multiple degrees of movement freedom with possibility
to change the direction (e.g., crossroads, open spaces, squares,
etc.). These two cases are explained in the next two subsec-
tions. Then, the last part of this section describes the proposed
channel quality prediction strategy, which is further exploited
for the communication data rate prediction.

A. Mobility prediction with one degree of mobility freedom

If the UE’s mobility is limited to one degree of mobility
freedom (i.e., UE following a sidewalk or street) an extrapola-
tion of the UE’s movement is a suitable approach to predict the
UE’s future position following the assumption of the limited
knowledge about the UEs as defined in Section III-C. The
prediction of the UE’s movement can be divided into two
subcases: i) the UE moving along a straight path and ii)
the UE moving along a curved path. In the first subcase,
we can simply extrapolate the future movement of the UE
from its past movement. However, in the second case, a linear
motion extrapolation of the UE’s movement would lead to an
inaccurate prediction of its position, crossing the environment
boundaries such as sidewalks, streets or walls, as shown in

Fig. 2. Therefore, after describing the extrapolation of the UE’s
movement, we also outline how to exploit the knowledge of
the environment to obtain a more accurate prediction of the
UE’s movement.

The position of the UE at the discrete time C is represented
by the coordinates (GC , HC ). From the current time instant C
and the previous time instant C − ΔC, we obtain the UE’s
approximated velocity vector (ΔG,ΔH) where:

ΔG =
GC − G (C−ΔC)

ΔC
, (14)

ΔH =
HC − H (C−ΔC)

ΔC
. (15)

The predicted UE’s position at the time C + :ΔC, where : =
{1, 2, . . . ,  } and  ΔC being the prediction window in seconds
(typically ranging up to tens of seconds [43]), is calculated as:

GC+:ΔC = GC + :ΔGΔC, (16)
HC+:ΔC = HC + :ΔHΔC. (17)

Now we describe an extension of the simple linear extrap-
olation defined in (16) and (17) by exploiting a knowledge of
the environment. Let the UE be located at the position (GC , HC )
(indicated by a dot in Fig. 2) and let the UE follow a curved
street as shown in Fig. 2. In our model, the street is represented
by a discrete set of street centers -×. =

{
(G ( 9) , H ( 9) )

}
9∈� , � ⊆

Z, indicated by the crosses in Fig. 2. To exploit the knowledge
of the environment, the UE’s position is mapped to the closest
street center, identified by the index 9∗ determined as follows:

9∗ = argmin
9∈�

√(
GC − G ( 9)

)2 +
(
HC − H ( 9)

)2
. (18)

In Fig. 2, the closest street center to the UE is
(
G ( 9∗) , H ( 9∗)

)
.

Based on the knowledge of the environment, the UE’s position
at C + :ΔC is then mapped to the street center indexed by 9∗ +
^(:) as:

GC+:ΔC = G ( 9∗+^ (:)) , (19)
HC+:ΔC = H ( 9∗+^ (:)) , (20)

where ^(:) =
⌊
:ΔC

√
ΔG2+ΔH2

Δ 9

⌉
approximates the number of

street centers run over by the UE during : time instants and
Δ 9 is the distance between any two consecutive street centers,
which we consider constant and can be computed as Δ 9 =√(
G ( 9+1) − G ( 9)

)2 +
(
H ( 9+1) − H ( 9)

)2.

B. Mobility prediction with multiple degrees of movement
freedom

Now, we extend our mathematical formulation to the case
where the UE has multiple degrees of mobility freedom. The
set of degrees of freedom for the UE movement is denoted
as , . This set includes the angles F that the UE can select
for its future direction. The set of arrival angles + includes
the angles E from which the UE has arrived to the current
position. In a general scenario, the UE can select any departure
(arrival) angle between 0◦ and 360◦. To limit the complexity,
we discretize the angles in a similar way as in [64]. This
means that a range of nearby angles is represented by a single
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Predicted UE movement disregarding environment

Predicted UE movement considering environment

Actual UE movement

Street center position

Current UE position

(x(j*),y(j*))

(xt,yt)

UE

Fig. 2. Example of UE mobility prediction with one degree of mobility
freedom following a curved street with known street center positions.

departure angle. For example, the discretization with angle
difference of 1o results in 360 elements (arrival and departure
angles) in the both sets + and , . An example of the UE with
four degrees of freedom, i.e., |+ | = |, | = 4, is shown in Fig. 3,
where the UE arrives from the angle E3 and can depart in the
direction of any angle from the set {F1, F2, F3, F4}.

In our model, among all the departure angles in , , we
consider only those with non-zero probability of selection. The
adopted probabilistic model is based on Markov chains with
underlying Hidden Markov Model (HMM), which is suitable
for systems with multiple states and transitions between those
states. The important property of Markov chains is that the
conditional probability distribution of future states depends
solely on the present state. This property is valid for our
model as we can legitimately suppose that the departure angle
selected by the UE depends only on the arrival angle E and
the current UE’s position.

The HMM model consists of states and transition proba-
bilities between the states. The states of the HMM model
(represented by the departure angles) are learned from an envi-
ronment layout in the form of a map, (e.g., openstreetmaps.org
[65]) in line with [66]. Note that the learning of HMM
states can be done either offline in the cloud or in real-
time. The offline learning minimizes the delay imposed by
the learning. Nevertheless, as the learning of the HMM states
is not a computationally intensive task [66], even the real-time
learning is suitale for practical use cases. Exploitation of the
environment maps for mobility prediction is considered for
example in [63] or [64]. Therefore, with the known states,
only the transition probabilities (probability of the transition
from the arrival to departure angles) of the Markov chain
need to be estimated. The transition probabilities represent the
probability that each departure angle is chosen [67]. Estimation
of the transition probabilities is then done by estimation of the
transition probabilities of the Markov chain as described in
[67]. To this end, the number of transitions from each arrival
angle E ∈ + to each departure angle F ∈ , is counted. Note
that, if the number of states in unknown, the estimation of
the HMM states and transition probabilities is done via the
Maximum Likelihood Estimation (MLE) [68].

As the time to learn the transition probabilities between
each arrival and departure angle can be high, we consider the

v1=w1=20° 

v2=w2=75° 

v3=w3=180° 

v4=w4=300° 

Fig. 3. Example of the UE with multiple degrees of mobility freedom, arriving
from angle E3 (red dashed line) with multiple options for the departure angle
F (solid lines).

transition model aggregated over all the UEs altogether, which
reduces the learning time for the estimation of the transition
probabilities between the states in the Markov chain. The cost
of this aggregation is a slightly lower accuracy of the learned
model. However, once enough transitions for each UE are
collected, the transition model of the individual UE can be
used to replace the aggregated model. It is worth to mention
that the learned aggregated transition model still guarantees
good results, because the main purpose of the model is to
avoid the transitions with very low probabilities. Moreover,
by exploiting the aggregated transition model, the transition
probability of any UE, including those with unknown transi-
tion model, can be predicted.

The probability that the UE at the position (GC , HC ) selects a
departure angle F conditioned by the arrival angle E is denoted
% (F |E, (GC , HC )). This probability, representing the transition
probability in the Markov chain [67], is calculated as:

% (F |E, (GC , HC )) =
# (E, F, (GC , HC ))∑

F′∈, # (E, F′, (GC , HC ))
, (21)

where F ∈ , is the selected departure angle, # (E, F, (GC , HC ))
is the number of transitions from the arrival angle E to the
departure angle F at the UE’s position (GC , HC ) summed up
till the current time C and for all UEs. Notice that we do not
exclude the possibility that the UE stops at the crossroad or
departs via the arrival angle (i.e., F = E). In this case, the VM
placement remains constant, because frequent re-deployments
or migrations would overload the network and lead to a
disruption in the MEC service. However, the communication
path selection is exploited to provide sufficient connectivity
considering also channel changes.

Based on the probabilistic model (21), we extend the
prediction of mobility by considering the departure angles F
with non-zero probability. When, the surrounding environment
is unknown, for a given F, (16) and (17) are modified as
follows:

GFC+:ΔC = GC + :ΔC
√
ΔG2 + ΔH2 cos(F), (22)

HFC+:ΔC = HC + :ΔC
√
ΔG2 + ΔH2 sin(F), (23)

where ΔG and ΔH are calculated via (14) and (15), respectively.
Furthermore, in the case when the movement is predicted with
environment knowledge, we extend (18) to:

9∗F = argmin
9∈�F

√(
GF
C+ΔC − G ( 9)

)2
+

(
HF
C+ΔC − H ( 9)

)2
, (24)
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where �F is the set of street centers along the departure angle
F. Note that 9∗F represents the closest street center to the UE’s
position at the time C + ΔC, when the departure angle is F.
Accordingly, (19) and (20) are generalized as follows:

GFC+:ΔC = G ( 9∗F+^ (:−1)) , (25)
HFC+:ΔC = H ( 9∗F+^ (:−1)) , (26)

with ^(0) = 0.
From the estimated positions of the UE at the times C + :ΔC,

we calculate the corresponding Euclidean distances to the
gNBs. These distances replace the communication data rate
as the offloading metric whenever the data rate is unknown
or impossible to predict. The predicted Euclidean distance
between the UE and the B-th gNB located at (G(B), H(B)) at
the time C + :ΔC is calculated as:

3C+:ΔC (B, F) =√(
GF
C+:ΔC − G(B)

)2
+

(
HF
C+:ΔC − H(B)

)2
.

(27)

C. SINR and communication data rate prediction

After predicting the UEs’ future movement, the commu-
nication data rate is calculated based on the estimated future
SINR values. Future SINR is predicted either from SINR maps
[13] or is extrapolated from the past SINR values if the SINR
map is not learned yet. First, we describe the exploitation of
the SINR map, and then we describe the extrapolation of the
SINR based on the past SINR values.

The SINR map, shared by all the gNBs is represented by a
matrix Ψ containing the SINR levels ΨG,H observed by the UEs
at discrete and quantized coordinates G ∈ N and H ∈ N. The
SINR map is updated each time when the SINR measurement
is received from the UE at the coordinates (G, H) and stored
in kG,H . The update of the SINR map is implemented as a
weighted average of the current SINR map value ΨG,H and
the SINR map measurement kG,H . Thus, the SINR map is
updated so that:

ΨG,H ←
(
(1 − j)ΨG,H + jkG,H

)
, (28)

where j is the weight of the new input value to the SINR
map. Note that j can be optimized based on the performance
in a real deployment. Due to the dependency of j on the
real deployment, we leave the optimization of j for future
research.

If the SINR map is not learned yet, the SINR is extrapolated
based on ARIMA [69], because it enables prediction of non-
stationary SINR as required in our case. The SINR is non-
stationary due to its time variance caused by varying power
levels of received and interference signals.

The generic ARIMA (%, �, �) model is defined by the
order of autoregressive part %, the degree of the first differ-
encing �, the order of the moving average part �, and the
model parameters: the autoregression \8 and the differencing
and moving average terms q8 (index 8 indicates terms of
autoregression and terms of moving average) [69]. As the
SINR does not periodically change values, we leave out the
seasoning difference, which is a common part of the generic

ARIMA, but it is exploited only if the predicted time series
depends on the month, hour, and so on. For our purposes of
the SINR level prediction, we define the ARIMA model for
SINR prediction as:

�%(�#'C = (�#'C−% , (29)

q8 (�) = 1 −
�∑
8=1

q8�
8 , (30)

\8 (�) = 1 −
%∑
8=1

\8�
8 , (31)

(�#'C =
\� (�) 4C
q% (1 − �)�

, (32)

where (�#'C is the SINR time series, �8 is the lag operator of
the 8-th order, and 4C is the error term of the ARIMA model.

The ARIMA model and the coefficients of autoregression,
moving average, and lag operator are estimated from the
past samples of SINR by MLE following [69]. Then, the
future SINR levels (�#'C+ΔC , (�#'C+2ΔC , . . . , (�#'C+ ΔC are
calculated based on the estimated ARIMA model and the co-
efficients from (32). The communication data rate is then pre-
dicted from SINR levels at times (C + ΔC, C + 2ΔC, . . . , C +  ΔC)
via (2). Note that  represents the number of predicted SINR
samples.

V. PROPOSED DYNAMIC COMMUNICATION AND
COMPUTING RESOURCE ALLOCATION ALGORITHM

In our previous work [52], we have shown that if a pre-
diction with a fixed accuracy is available and the VMs are
pre-allocated on all gNBs, the communication and computing
resource allocation can handle offloading of the tasks with
the arrival rate _ up to 1 task per second in the considered
scenario. However, the hypothesis of fixed prediction accuracy
is not reasonable for real networks. Thus, we propose an
algorithm, denoted Dynamic Communication and Computing
Resource Allocation (DCCRA), which exploits the probabilis-
tic UEs’ mobility prediction approach described in Section IV.

The DCCRA is composed of two cooperating algorithms:
one for the computing and one for the communication resource
allocation. The computing part targets a proper VM placement
(computing resource allocation) while the communication part
consists in selection of a proper communication path (commu-
nication resource allocation). The cooperation of the proposed
algorithms is shown in Fig. 4 for a prediction window of
 ΔC. First, the VM placement is determined for each UE via
Algorithm 1 over the duration of  ΔC. In parallel, a proper
communication path is selected by Algorithm 2 for individual
UEs in every time interval C. Both algorithms exploit and
are joined by the predicted channel quality. The computing
resource allocation is done over all gNBs in the proximity
of the UE considering the predicted channel quality. At the
same time, the communication resource allocation considers
the predicted channel quality together with the communica-
tion resources availability. Therefore, both low complexity
algorithms work together to achieve the joint computing and
communication resource allocation. Both parts of the DCCRA



IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 9

u1

Alg. 1.
uN

t+KΔtt+2Δtt+Δtt

Alg. 2. Alg. 2. Alg. 2.

UEs

time

Alg. 2.

Alg. 1.

Communication 
resource allocation

C
o

m
p

u
ti

n
g

 
re

so
u

rc
e 

al
lo

ca
ti

o
n

Fig. 4. Cooperation of the proposed DCCRA algorithms.

are described in the following subsections, followed by a
complexity analysis.

Note that the computing resources can be allocated either
in the form of the VMs or the containers. To simplify the
following text, we describe the algorithm for the VMs, but
these are interchangeable with the containers in the proposed
algorithm. Furthermore, the proposed algorithm is designed
for a generic case with multiple degrees of mobility freedom,
as described in Section IV-B.

A. Computing resource allocation

The computing resource allocation part of the proposed
DCCRA algorithm, deciding where and when to allocate the
VMs for each UE, is described in this sub-section.

In general, the DCCRA selects the most suitable gNB B∗C
for the placement of computing resources in terms of the
VMs. However, in the case with multiple degrees of movement
freedom, the VM is pre-allocated on multiple gNBs. Both
availability of the computing resources and the quality of all
potentially involved communication links are considered. To
alleviate the gNBs’ backhaul load for the placement of the
computing resources, we restrict the list of available links
exclusively to the gNBs from set &C (D) with which the UE
can communicate directly at the time C. This restriction leads
to a lower overhead, as the SINR information from the gNBs
in (\&C (D) is not required.

The management of VMs (starting, terminating, and adapt-
ing VMs to the actual movement and channel quality of the
UEs) is done in a Mobile edge orchestrator (MEO), located
in the core network [2], [70]. Whenever the information about
the UEs’ movement and the channel quality is available, the
MEO adapts the VM initialization based on the actual UE’s
velocity and position. The adaptation of the VM initialization,
consists of changing the allocation of the computing resources
for the UE to other gNB if the real movement of the UE
differs from the predicted one. On the other gNB, the pre-
allocated VM is exploited if available, otherwise the VM is
started. Furthermore, the MEO terminates VMs that are no
longer needed. More details about exploitation of the MEC
for various offloaded applications, such as VR or AR are
provided in [7]. The computing resources are allocated every

 ΔC seconds to update the VM placement. The value of  ΔC
can be adapted to each environment, e.g.,  ΔC is set to a high
value (tens of seconds) in an area with very few crossings
whereas in an area with a high number of crossings, such as
city center,  ΔC is set to a low value (few seconds or less).
Thus, the computing resource allocation can be dynamically
adapted to various environments and various UE’s mobility
characteristics (walking, in a car, train, etc.).

The process of computing resource allocation is shown
in Algorithm 1. The algorithm is designed for the case of
UEs with several degrees of mobility freedom (line 2). At
first, the UE’s velocity vector is predicted (line 1). Then, if
the environment is known (line 3), it is exploited to predict
the closest street centers (line 4). Afterwards, the computing
resources are allocated for every time instant C + :ΔC until
C +  ΔC (lines 6 to 31). Only the gNBs with enough available
computing resources are considered for the VM placement
(lines 13 and 14).

In the next steps, the offloading metric UFg (B) is determined.
The offloading metric UFg (B) is derived from the communi-
cation data rate (according to (2)), either from SINR map
(line 17) provided that the SINR map is available (line 16),
or from SINR predicted from known previous SINR levels
by ARIMA (line 23) if SINR can be predicted (line 19). If
SINR to the B-th gNB cannot be predicted due to a lack of
information for the prediction (i.e., if SINR map is not trained
or not enough known previous SINR levels are available) the
offloading metric UFg (B) is set based on the distance 3g (B, F)
defined in (27) (line 20).

The sequence of the gNBs that maximizes the decision
metric UFg (B) is selected for the VM placement

{
B∗g (F)

}C+ ΔC
C

(line 30). The sequence
{
B∗g (F)

}C+ ΔC
C

is then exploited at
the MEO to manage the initialization of the VMs. The
management of the VMs includes determination of the time
instances when the VM is started (C() and ended (C� ). Between
these two times, the VM on the gNBs should be up and
running. The time instances C( and C� are derived based on{
B∗g (F)

}C+ ΔC
C

and are equal to the first and the last occurrence
of B in the sequence

{
B∗g (F)

}C+ ΔC
C

, respectively. Furthermore,
we avoid the pre-allocation of the VM to the gNBs, where
the VM would be exploited for less than the VM startup
time C+ " (line 33). The gNBs for which C� − C( < C+ " are
removed from

{
B∗g (F)

}C+ ΔC
C

and these are not considered for
the VM placement. Instead, already running VMs are exploited
to handle the offloading. Thus, the computing load of the gNBs
is decreased and the gNBs can be exploited for the VMs of
the other UEs.

An example of the Algorithm 1 determining VM pre-
allocation is shown in Fig. 5. In this example, three gNBs
(gNB1, gNB2, gNB3) and one UE are located on a crossroad
with three possible future directions F1, F2, and F3. For each
direction and time step, the gNBs are ordered according to U
(see table in the middle part in Fig. 5). Then, C( and C� are
determined as the first and the last occurrence of each gNB in
the first row of the table in Fig. 5 over all departure angles.
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Algorithm 1 Allocation of computing resources.
1: Calculate UE’s ΔG and ΔH velocity via (14) and (15)
2: for F ∈ , such that % (F |E, (GC , HC )) > 0
3: if there exists a known map of street centers
4: Calculate 9∗F via (24) from (22) and (23)
5: end if
6: for g = C, C + ΔC, . . . , C +  ΔC
7: if there exists a known map of street centers
8: Calculate

(
GFg , H

F
g

)
via (25) and (26)

9: else
10: Calculate

(
GFg , H

F
g

)
via (22) and (23)

11: end if
12: for B ∈ &g (D)
13: if lg (B) < l(D)
14: &g (D) ← &g (D)\B
15: else
16: if ΨG,H ≠ 0,∀bGFg e, bHFg e
17: (�#'g (B) ← ΨGFg ,HFg
18: else
19: if (�#'g (B) is not predictable
20: UFg (B) ← 1

3g (B,F) ,∀B ∈ &g (D)
21: break
22: else
23: Predict SINR by (32)
24: end if
25: end if
26: Calculate 2g (D, B) via (2)
27: UFg (B) ← 2g (D, B)
28: end if
29: end for
30: B∗g (F) ← argmaxB∈&g (D) U

F
g (B)

31: end for
32: end for
33: Remove B with VM exploited for less than C+ "

B. Selection of communication path

To further reduce the offloading delay, we propose also
an algorithm reducing the communication delays C$ and C� .
The algorithm forces the UE to perform handover to the gNB
that provides the fastest delivery of the offloaded task to the
VM considering radio as well as backhaul data rates. The
algorithm is inspired by our previous work, Path Selection with
Handover (PSwH) algorithm [29], [30]. The PSwH maximizes
the communication data rate of the UEs. However, in the
PSwH, the UEs do not cooperate and the algorithm does not
consider the prediction of the channel quality for resource
allocation. Thus, we propose the algorithm that efficiently
handles the rapid changes in the UEs’ communication data
rates. The selection of the communication paths for the UEs
is made by an iterative update of the serving gNBs every ΔC as
shown in Algorithm 2, assuming fixed B∗C for every D during
given time interval 〈C,C + ΔC〉. The communication resource
allocation by the PSwH can be implemented in to the mobile
networks via network slicing and orchestration in a similar
way as indicated in [71].

The algorithm for selection of communication path starts
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Fig. 5. Example of VM placement by Algorithm 1 for three gNBs (number
of rows in each table in the middle part of the figure) over five time
instants (columns in each table in the middle part of the figure). For each
departure angle, represented by individual table, a sequence (row) of the gNBs
maximizing U is chosen and then exploited to determine C( and C� for each
gNB.

with a determination of the serving gNBs based on the SINR
of the UEs (line 1). Then, the current data rates in uplink
(following (4)) and downlink (by adapting (2)) are derived
from the known SINR and from the number of connected UEs.
Then, a set of the gNBs (̂ is created by sorting the gNBs in
descending order based on their radio communication load
='C (B) (line 3). The algorithm then goes through the gNBs in
(̂ that have more than one connected UE (lines 4 and 5). Four
variables are defined for the communication path selection: i)
minimal gain of handover to avoid exploiting handover for the
UEs with a minor data rate improvement n , ii) the UE D� with
the highest benefit from handover to any gNB (set initially to
0, see (line 6)), iii) the gNB B� selected by the UE D� as a
candidate for the handover (set to 0 in initial phase), and iv)
maximal achievable handover gain of all the UEs V (also set
to 0 in initial phase). The algorithm iteratively searches for the
UE, which can benefit the most from handover, i.e., the UE
that maximizes V (lines 9 to 17). The auxiliary handover gain
Va (exploited to find V) is determined for each pair of the UE
and the gNB that can communicate with SINR above (�#'<8=
(lines 9 and 10). The gain is defined as the difference between
the achievable communication data rates (in both uplink and
downlink) when the UE is connected to its serving gNB BC and
to a target gNB from the set (\BC (line 11). If Va is higher than
V, D� and B� are updated. Then, if V is equal to or higher
than the threshold n , the UE D� is handed over to the gNB
B� (line 19) and the UEs’ data rates are updated (line 20).

C. Complexity

The minimization of the offloading delay by the joint
selection of the VM placement and the communication path
leads to a combinatorial formulation. The total complex-
ity of the DCCRA for # UEs and considering |, | is
O (# |( | |&C | + # |, | |&C | ), where |&C | = maxD ∈* |&g (D) |.
The state of the art algorithm presented in [48], further
denoted as VM Online Approximation Placement (VM-OAP)
algorithm, has complexity O

(
# |( |2 

)
. However, the VM-

OAP algorithm is designed only for one degree of freedom.
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Algorithm 2 Allocation of communication resources.
1: Determine serving gNBs maximizing SINR.
2: Calculate the uplink and downlink data rates 2*!C (D, B, B∗)

and 2�!C (D, B, B∗) for each UE and gNB.
3: Sort the gNBs in descending order based on ='C (B) to (̂
4: for B̂ ∈ (̂
5: if ='C ( B̂) > 1
6: Initialize D� = 0, and B� = 0.
7: while (true)
8: V = 0
9: for D ∈ * such that BC = B̂

10: for B ∈ &g (D)
11: Va = <8={2*!C (D, B, B∗) −

2*!C (D, B̂, B∗) , 2�!C (D, B, B∗) − 2�!C (D, B̂, B∗)}
12: if Va > V
13: D� = D, B� = B.
14: V = Va

15: end if
16: end for
17: end for
18: if V ≥ n
19: BC (D� ) = B�
20: Update 2*!C (D, B, B∗) and 2�!C (D, B, B∗).
21: else
22: break
23: end if
24: end while
25: end if
26: end for

When |, | = 1 and all gNBs being considered for the path
selection, i.e., |&C | = |( | (worst case scenario), the DCCRA
is of the same complexity as the VM-OAP algorithm in the
worst case.

VI. SIMULATION SCENARIO AND MODELS

In this section, we describe simulation models and scenarios
for performance evaluation carried out in MATLAB. The main
simulation parameters, presented in Table I, are in line with
recommendations for mobile networks with small cells as
defined by 3GPP in [72]. We also follow the specifications
of the physical layer and frame structure parameters for LTE-
A mobile networks defined in the same document. The signal
propagation over radio channel is modeled according to 3GPP
[72] with path loss model %! = 128.1 + 37.6;>6103, where 3
is the distance between the UE and the gNB. We consider
the mapping function between SINR and MCS defined in
[61] for Bit Error Rate (BER) of 10 %. The minimal SINR
required to enable communication, (�#'<8=, is set to -6.9
dBm, according to [61]. We set the weighing factor for SINR
map updates, j, to 0.5 so that the SINR changes due to
varying environment are quickly propagated in our model.
Note that, in a real deployment, j can be adjusted based on
the environment. The backhaul of the gNBs is modeled as
an optical fiber with randomly generated available capacities
following a normal distribution with the mean ` = 100 and
the variance f2 = 2 (in Mbit/s).

TABLE I
SIMULATION PARAMETERS.

Parameter Value
Simulation area 650m x 370m
Carrier frequency 2 GHz
Bandwidth of uplink/downlink 10/10 MHz
Tx power of gNB/SCgNB/UE (() G ) 27/15/10 dBm
(� #'<8= -6.9 dB
Weighting factor 0.5
Number of gNB/SCgNB 4/30
VM startup time C+" 4.5 s
Prediction window  200
ARIMA number of past samples 20
Offloaded task size !O = results size !C 20/200/2000 kB
Offloaded task number of instructions !P 1e6 instructions
gNB/SCgNB CPU 3300 MIPS
Shadowing factor 6 dB
Handover interruption duration C�$ 30 ms
Threshold n 100 kbit/s
Number of UEs 30/60/90
Speed of users 1 m/s
Backhaul capacity – Normal distribution `=100, f2=2
Simulation time/Number of simulation drops 3 600 s/ 20 drops
Simulation step 100 ms

Since we target the real-time applications, the offloaded
tasks with sizes of 20 and 200 kB are considered [73].
Moreover, the offloaded task with a size of 2000 kB is
investigated as well, to show performance even for larger tasks.
The VM startup time C+ " , representing the time required to
initialize the VM and to prepare it to process the offloaded
tasks is 4.5 s for the VMs [32]. This corresponds to the time
between the moment when the VM pre-allocation begins to
the moment when the offloaded application is run. Note that
the C+ " contributes to the offloading delay only when the VM
is not prepared on the gNB on time. The radio and backhaul
resources are allocated to the UEs by round-robin scheduling.

The simulation area, as shown in Fig. 6, represents a part of
Prague, Czech Republic. The environment is similar to the one
in [64], where the authors consider arrival and departure angles
difference of 90◦. In this area, four gNBs (represented by blue
discs in Fig. 6) are deployed according to the real position of
the gNBs of a mobile operator [74]. In addition, 30 small cell
base stations (SCgNBs), divided into two sets with different
transmission frequencies are randomly deployed (denoted as
orange crosses in Fig. 6). To show the impact of network
load on the performance, 30, 60, and 90 UEs are randomly
dropped into the simulation area. The UEs follow the realistic
mobility model with crossroad direction probabilities defined
in [74]. The number of UEs per gNB in our scenario is about
0.9, 1.8, and 2.7, which is higher than that in [48] (where
they assume roughly 0.55 UEs per gNB). We consider also
the higher UEs’ density, i.e., 60 and 90 UEs, to evaluate the
performance with highly loaded gNBs (MEC servers). Thus,
we show the behaviour of the proposed algorithm in even
more challenging scenarios. Furthermore, the bandwidth for
the wireless communication is 10 MHz in uplink and 10 MHz
in downlink allocated in Frequency Division Duplex manner.
We exploit a common handover procedure based on SINR,
as described in [75], to keep the UE connected to the gNB
with the highest SINR. In the simulations, the UEs move
with the same speed. This might be seen as an optimistic



IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 12

50 meters

Fig. 6. Simulation model with deployment of gNBs and SCgNBs.

assumption, however, the proposed DCCRA takes into account
the speed of UE via (9) and (10). Thus, the DCCRA can
handle easily different speeds of UEs without any degradation
of performance.

The energy consumption model of the UEs follows an
empirical model defined in [76]. This energy consumption
model considers the power consumption of the UE commu-
nication modem being turned on %$#=853 mW, the uplink
communication power %*! , and the downlink communica-
tion power %�! . Both uplink (%*!) and downlink (%�!)
communication powers consist of the signal processing parts
%) G�� and %'G��, the radio parts %) G'� and %'G'� , and
the consumption of the transmitter (in uplink) and receiver (in
downlink) circuits %) G$# and %'G$# , respectively. Hence,
the power consumed for the uplink communication (%*!) is
calculated as:

%*! = %) G$# + %) G'� + %) G�� [mW], (33)

where %) G$# = 29.9 mW, %) G�� = 0.62 mW, and %) G'� is
calculated as:

%) G'� =


0.78() G + 23.6 () G ≤ 0.2
17() G + 45.4 0.2 < () G < 11.4
5.9(2

) G
− 118() G + 1195 11.4 < () G ,

(34)
where () G is the transmission power of the UE in dBm.

The power consumed for downlink communication (%�!)
is calculated as:

%�! = %'G$# + %'G'� + %'G�� [mW], (35)

where %'G$# = 25.1 mW, and %'G�� is calculated as:

%'G�� = 0.97''G + 8.16 [mW], (36)

where ''G is the downlink throughput in Mbit/s, and %'G'�
is calculated as:

%'G'� =

{
−0.04('G + 24.8 ('G ≤ −52.5
−0.11('G + 7.86 ('G > −52.5,

(37)

where ('G is the power received at the UE from the gNB in
dBm.

The energy consumption of the UE is then calculated by
multiplying the required power by the transmission time:

� =�*! + ��! = %$# (CO + CC + C� ) +
+ %�!CC + %*!CO [J].

(38)

VII. PERFORMANCE EVALUATION AND DISCUSSION OF
RESULTS

The performance of the proposed algorithm (DCCRA) is
compared with two state-of-the-art approaches:
• Serving Only (SO) according to [77] - where the VM is

kept at the serving gNB, so the VM is migrated each time
handover is performed.

• VM Online Approximation Placement (VM-OAP) accord-
ing to [48] – where the VM placement is based on
predicted future costs (in terms of channel quality) of
its placement.

In addition to these two competitive solutions, we also show
the performance of the DCCRA under perfect mobility and
channel quality prediction with the VM pre-allocation on only
one gNB (denoted as DCCRA-perfect in the paper) to see
potential improvement if the prediction would be ideal.

In Fig. 7, we show the mean offloading delay over the task
arrival rate for 30 UEs with the offloaded task size of 20
kB (Fig. 7a), 200 kB (Fig. 7b), and 2000 kB (Fig. 7c). Note
that the mean offloading delay consists of the time consumed
to deliver the offloaded task to the MEC, the time required
to process the offloaded task, the time spent by a delivery
of the processed data back to the UE, the time consumed
due to handover process and the time of the VM starts.
In each figure, we see that a higher arrival rate generally
leads to a higher offloading delay because more offloaded
tasks per second are generated and more communication and
computation resources are consumed. Furthermore, it is shown
that increasing the offloaded task size results in a higher
offloading delay, as more data have to be transmitted. The
SO algorithm supports offloading up to _ = 0.2 for !O = !C
up to 200 kB. The SO algorithm does not enable a higher
_ as it does not exploit any prediction or pre-allocation of
the VMs, thus, the resources become unavailable even for a
very light computation load. The VM-OAP algorithm enables
_ up to 2 for !O = !C = 20 kB. However, for a higher !O
and !C, the VM-OAP algorithm can handle _ only up to
0.33. The VM-OAP exploits channel quality prediction, but
it does not pre-allocate the VMs. The DCCRA outperforms
both compared algorithms by enabling the offloading of the
tasks with _ up to 5 for !O = !C up to 200 kB, and _ up
to 0.5 for !O = !C = 2000 kB. This means that the DCCRA
enables offloading with almost twice higher _ than the VM-
OAP. Comparing the DCCRA to the DCCRA perfect, we
can see that the performance of both is very similar and the
ideal prediction does not lead to any notable reduction in the
offloading delay.

The proposed DCCRA reduces the offloading delay by up
to 78 % comparing to the SO algorithm for _ = 0.2. In com-
parison to the VM-OAP, the DCCRA reduces the offloading
delay by 8.2 % for !O = !C = 20 kB and _ = 2. Furthermore,
increasing !O = !C to 2000 kB leads to an increased gain
(15.2 % for _ = 0.33) of the DCCRA in comparison to the VM-
OAP algorithm. The offloading delay reduction is achieved by
optimizing the placement and pre-allocation of the VMs, as
well as the selection of the communication path. Increasing
!O = !C leads to a higher offloading delay for all compared
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Fig. 7. Mean times required to offload, compute, and collect results of the offloaded task for 30 UEs with !O = !C = 20 kB (a), !O = !C = 200 kB (b),
and !O = !C = 2000 kB (c).
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Fig. 8. Mean offloading energy for 30 UEs with !O = !C = 20 kB (a), !O = !C = 200 kB (b), and !O = !C = 2000 kB (c).

algorithms, but the DCCRA keeps the offloading delay below
100 ms for small sized tasks (!O = !C below 2000 kB).

Fig. 8 shows the mean energy consumed by the UEs for
the transmission of the offloaded task and the reception of
the computing results with the offloaded task size of 20 kB
(Fig. 8a), 200 kB (Fig. 8b), and 2000 kB (Fig. 8c). In all these
figures, any increase in _ or !O = !C, leads to an increase
in the energy consumed per the offloaded task, because the
network load rises. The higher energy consumption is caused
by increased communication time due to the communication
and computing load of the gNBs, and the relation between the
energy and the transmission time (see (38)). In comparison
to the SO algorithm, the proposed DCCRA increases the
consumed energy by less than 23 %, however, it is only 0.1 J,
for !O = !C = 20 kB and 8.3 %, i.e., 0.5 J, for !O = !C = 200
kB. Note that this increase is largely compensated by a
significant reduction in the offloading delay by up to 78 % and
by enabling the offloading of tasks with !O = !C = 2000 kB, as
shown in Fig. 7. Furthermore, the DCCRA reduces the energy
consumed for the offloading by up to 35 % compared to the
VM-OAP algorithm. The reduction in the offloading energy
is achieved by avoiding the overloaded communication paths
and by pre-allocation of the VMs. Avoiding the overloaded
communication links is done by the proposed selection of
communication path, while the VMs are pre-allocated to
minimize the delay of VM startup (migration). Again, we
see that the DCCRA provides a similar performance as the

DCCRA perfect.
In Fig. 9, we show the mean offloading delay over the task

arrival rate for 60 UEs with the offloaded task size of 20
kB (Fig. 9a), 200 kB (Fig. 9b), and 2000 kB (Fig. 9c). The
results follow the same trends as shown in Fig. 7 for 30 UEs.
The DCCRA increases the gain in comparison to the VM-
OAP to 31 % for _ = 0.33 and !O = !C = 2000 kB. This is
caused by the fact that the DCCRA balances the computing
and communication loads among the gNBs.

Similar changes due to the increased number of UEs are
seen in mean offloading energy, as shown in Fig. 10 with the
offloaded task size of a 20 kB (Fig. 10a), 200 kB (Fig. 10b),
and 2000 kB (Fig. 10c). However, a higher offloading delay
leads to an increased energy consumption. The DCCRA leads
to a similar energy consumption as the DCCRA perfect for
!O = !C = 200 kB or less. In the case of !O = !C = 2000
kB, the DCCRA slightly lowers the energy consumption with
respect to the DCCRA perfect. This is caused by the pre-
allocation of slightly more VMs for each UE by the DCCRA
comparing to the DCCRA perfect. These additional pre-
allocated VMs by the DCCRA are exploited to avoid the
overloaded gNBs. Note that the DCCRA perfect does not
predict the number of connected UEs, thus, the predicted
data rate as well as the overloading of the gNBs is not
predicted perfectly. Therefore, the DCCRA provides a minor
improvement over the DCCRA perfect, but at the cost of pre-
allocating a higher number of VMs.
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Fig. 9. Mean times required to offload, compute, and collect results of the offloaded for 60 UEs with !O = !C = 20 kB (a), !O = !C = 200 kB (b), and
!O = !C = 2000 kB (c).

521
0.

5
0.

33
0.

250.
2

0.
16

7

0.
12

5
0.

1

Arrival rate [1/s]

0

0.5

1

1.5

2

2.5

M
e

a
n

 o
ff

lo
a

d
in

g
 e

n
e

rg
y
 [

J
] SO

VM-OAP

DCCRA

DCCRA perfect

(a)

521
0.

5
0.

33
0.

250.
2

0.
16

7

0.
12

5
0.

1

Arrival rate [1/s]

5

6

7

8

9

10

11

12

M
e
a
n
 o

ff
lo

a
d
in

g
 e

n
e
rg

y
 [
J
] SO

VM-OAP

DCCRA

DCCRA perfect

(b)

521
0.

5
0.

33
0.

250.
2

0.
16

7

0.
12

5
0.

1

Arrival rate [1/s]

50

60

70

80

90

M
e
a
n
 o

ff
lo

a
d
in

g
 e

n
e
rg

y
 [
J
] SO (cannot handle)

VM-OAP

DCCRA

DCCRA perfect

(c)

Fig. 10. Mean offloading energy for 60 UEs with !O = !C = 20 kB (a), !O = !C = 200 kB (b), and !O = !C = 2000 kB (c).

The mean offloading delay for 90 UEs is shown in Fig. 11
with the offloaded task size of 20 kB (Fig. 11a), 200 kB
(Fig. 11b), and 2000 kB (Fig. 11c). The increased number
of UEs, again, leads to an increased offloading delay. The
SO algorithm cannot handle the offloading for 90 UEs due to
keeping the VM on the serving gNB. Furthermore, the VM-
OAP cannot handle the offloading for 90 UEs and !O = !C
above 20 kB, as shown in Fig. 11b and Fig. 11c, as it does not
exploit pre-allocation. The DCCRA enables offloading with _
equal to 5, 2, and 0.5 for !O = !C equal to 20, 200, and 2000
kB, respectively. From Fig. 7, Fig. 9, and Fig. 11, we see that
the DCCRA keeps the offloading delay for small offloaded
tasks (below 200 kB) under 100 ms, which is not possible
with any of the competitive algorithms.

The energy consumed for the offloading for 90 UEs is
shown in Fig. 12 with the offloaded task size of 20 kB
(Fig. 12a), 200 kB (Fig. 12b), and 2000 kB (Fig. 12c). Again,
the increased number of the UEs leads to an increased energy
consumption. The results for the SO algorithm are not shown,
as the algorithm cannot handle such high number of UEs. Fur-
thermore, the VM-OAP is shown only for !O = !C = 20 kB,
as it cannot handle larger offloaded task sizes with 90 UEs.
The DCCRA consumes slightly less energy than the DCCRA
perfect for !O = !C = 2000 kB due to the same reason as for
60 UEs (Fig. 10c).

The mean amount of data transmitted over the backhaul
due to delivery of the offloading task to the computing VM

and collection of the results at the UE is shown in Fig. 13a
for 20 kB, in Fig. 13b for 200 kB, and in Fig. 13c for 2000
kB. Since the SO algorithm places the VMs exclusively on
the serving gNB, no data is transmitted over the backhaul.
Thus, the SO is not included in these figures. For the VM-
OAP algorithm, the amount of data transmitted over the
backhaul is constant over all investigated task arrival rates
for all numbers of UEs, and for all offloaded task sizes. For
the proposed DCCRA, the amount of data transmitted over
the backhaul is slightly decreasing with increasing _. This is
caused by the need for a closer placement of the VMs to
minimize the communication delay when the time between
two consecutive offloaded tasks is low (i.e., for a high _). The
proposed algorithm transmits 40 % less data over the backhaul
comparing to the VM-OAP. This reduction is achieved by
allocating the VMs in a proximity of the UEs to reduce the
offloading delay and to alleviate the backhaul communication
load. The DCCRA perfect transmits slightly more data over
the backhaul comparing to the DCCRA. This is caused by the
pre-allocation of the VM on a lower number of the gNBs,
as shown in Fig. 14. Comparing the impact of the size of
offloaded task (i.e., comparing sub-figures Fig. 13a, Fig. 13b,
and Fig. 13c), we can see that the amount of data transmitted
over the backhaul is increasing proportionally to the offloaded
task size. Note that the lines for 30, 60 and 90 UEs are partially
overlapping. This is expected, as we show amount of data
transmitted over backhaul per one offloaded task.
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Fig. 11. Mean times required to offload, compute, and collect results of the offloaded for 90 UEs with !O = !C = 20 kB (a), !O = !C = 200 kB (b), and
!O = !C = 2000 kB (c).
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Fig. 12. Mean offloading energy for 90 UEs with !O = !C = 20 kB (a), !O = !C = 200 kB (b), and !O = !C = 2000 kB (c).
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Fig. 13. Amount of data transmitted over backhaul per task for !O = !C = 20 kB (a), !O = !C = 200 kB (b), and !O = !C = 2000 kB (c), diamond marker
(^) represents 30 UEs, plus marker (+) 60 UEs, and x marker (G) 90 UEs.

The number of VMs deployed for all UEs during the
simulation run is shown in Fig. 14. The sub-figures represent
results for the tasks with a size of 20 kB (Fig. 14a), 200 kB
(Fig. 14b), and 2000 kB (Fig. 14c), respectively. To provide an
insight into performance of our prior work [52], the number
of pre-allocated VMs is equal to the number of UEs (60)
multiplied by the number of gNBs (34), i.e., 2040 VMs in our
scenario. This number is many times higher than the number
of gNBs where the VM is pre-allocated by the DCCRA, thus,
we do not show the lines for 2040 VMs in the figure. Since
only our proposed algorithm exploits the possibility to deploy
more than one VM per UE, other algorithms are not depicted.

The SO and VM-OAP algorithms deploy the same number of
VMs as the number of UEs offloading their tasks, i.e., 30 VMs
for 30 UEs, 60 VMs for 60 UEs, and 90 VMs for 90 UEs.
To show the impact of mobility and channel prediction, we
compare the DCCRA to the DCCRA perfect for _ = 2 with
30, 60, and 90 UEs. From the Fig. 14, we see that just after
the simulation starts, there is a steep increase in the number
of the deployed VMs, as the number of UEs offloading their
tasks increases. However, when all the UEs are offloading
their tasks, the number of deployed VMs stabilizes at 32.4
VMs for 30 UEs, 65 VMs for 60 UEs, and 98 VMs for 90
UEs. In case of the DCCRA perfect, the number of deployed
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Fig. 14. Number of pre-allocated VMs for the proposal during the simulation run. for !O = !C = 20 kB (a), !O = !C = 200 kB (b), and !O=!C = 2000
kB (c), solid line represents 30 UEs, dashed 60 UEs and dotted 90 UEs.

VMs is 31 VMs for 30 UEs, 61.5 VMs for 60 UEs, and 93
VMs for 90 UEs. On the average, there are 1.08 and 1.03
VMs pre-allocated per UE for the DCCRA and the DCCRA
perfect, respectively, for all sizes of the offloaded tasks. The
difference in the number of pre-allocated VMs between the
DCCRA and the DCCRA perfect is caused by the need to
pre-allocate more VMs for the DCCRA to compensate for
the mobility and channel prediction inaccuracies. The minor
fluctuation in the number of pre-allocated VMs over time is
caused by the fact that the UEs are selecting from multiple
future angles at irregular time instants. With pre-allocation of
8 % more VMs than the number of UEs, the DCCRA enables
the offloading of the real-time task with very high arrival rate.

VIII. CONCLUSION

In this paper, we have proposed a novel algorithm for dy-
namic allocation of computing and communication resources
for Multi-Access Edge Computing. The algorithm dynamically
allocates VMs considering the computation load of gNBs and
selects the best communication path between the UE and the
gNB with allocated VM. For the proposed algorithm, we have
designed a suitable mobility channel prediction with a low
complexity.

Comparing to state of the art approaches, the proposed
algorithm reduces the offloading delay by up to 64 %, while
reducing the UE’s energy consumption by up to 39 %. The
proposed algorithm enables offloading of tasks with arrival
rate up to 5 tasks per second per UE for small task sizes.
The competitive algorithms do not surpass 2 and 0.5 tasks
per second for very small and small task sizes. The proposed
algorithm, also provides offloading delay below 100 ms for
small sized offloaded tasks, making it suitable for real-time
offloading. Furthermore, we show that the performance of the
proposed algorithm is similar to the case with perfect mobility
and channel prediction.

Future research should consider to develop a distributed so-
lution for the communication and computing resource alloca-
tion and the solution should be extended towards optimization
of the energy consumption.
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