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Abstract—In 5G mobile networks, computing and communi-
cation converge into a single concept. This convergence leads
to introduction of Mobile Edge Computing where computing
resources are distributed at the edge of mobile network, i.e.,
in base stations. This approach significantly reduces delay for
computing tasks offloaded from users’ devices to cloud and
reduces load of backhaul. However, due to users’ mobility,
optimal allocation of the computational resources at the base
stations might change over time. The computational resources
are allocated in a form of Virtual Machines (VM), which emulate
a given computer system. User’s mobility can be solved by VM
migration, i.e., transfer of VM from one base station to another.
Another option is to find a new communication path for exchange
of data between the VM and the user. In this paper, we propose
an algorithm enabling flexible selection of communication path
together with VM placement. To handle dynamicity of the system,
we exploit prediction of users’ movement. The prediction is used
for dynamic VM placement and finding of the most suitable
communication path according to expected user’s movement.
Comparing to state of the art approaches, the proposal leads
to reduction of the task offloading delay between 10% and 66%
while energy consumed by user’s equipment is kept at similar
level. The proposed algorithm also enables higher arrival rate of
the offloading requirements.

Keywords—mobile network, 5G, Mobile Edge Computing,
Virtual Machine, Offloading.

I. INTRODUCTION

Demands of users on computation power of user equipment
(UE) are rising due to computation demanding tasks in form
of applications such as facial/object recognition, video/speech
processing, etc. However, as the UEs are powered by the
battery with a limited capacity, these applications can be used
for a limited time only because of high energy consumption.
Moreover, if the UE cannot provide sufficient computation
power (e.g., due to outdated processor) the applications cannot
be run at all. In order to enable demanding applications on
low-class UEs or to extend battery life time of the UEs, a
possibility to offload computing tasks to the cloud has been
introduced [1].

As the newly introduced applications push their require-
ments towards real time, overall delay of communication
(including communication over radio, backhaul, and to the
cloud) in the conventional mobile cloud computing can be

a limiting factor. To reduce communication delay and energy
consumption of the UE, computational power can be allocated
closer to the users, i.e., at the base stations (eNB). This concept
is known as Small Cell Cloud (introduced in [2]) or Mobile
Edge Computing (MEC), which is an extension of the Small
Cell Cloud towards general exploitation of cloud computing
also for control and management of mobile networks. The
MEC aims to overcome limitations of an offloading delay and
backhaul congestion.

To compute a task in the cloud, a Virtual Machine (VM) is to
be created over allocated computational resources in the cloud.
The VM emulates a computer system, in which the same
application as the one, which computing is being offloaded,
is being run to process the offloaded task. The overall delay
of offloading (denoted as offloading delay) perceived by users,
consists of: i) transmission of the offloaded task to eNB where
the VM is allocated, ii) processing of the task by the VM and
iii) transmission of the results back to the UE. With focus
on offloading of real-time applications, the VM assigned to
the UE should be ready when the computing task is being
offloaded [3]. Otherwise, the delay due to creating and starting
VM would make such a service unusable.

To meet demands of users on quality of service for offload-
ing of heavy computation demanding applications, communi-
cation and computing resources have to be allocated jointly
[4]. The motivation for this is the overall offloading delay
consisting of communication and computation. However, the
problem solved in [4] aims at static users only. With moving
users, the problem becomes significantly more complicated
and more complex.

Two general approaches are suitable for handling offloading
for mobile users. The first one assumes to keep the VM at the
eNB at which resources were allocated at the time of the task
offloading [5]. In this case, the serving eNB is selected in a
common way according to radio signal quality. To keep the
UE connected to the eNB with the highest quality of signal,
common handover procedure [6] (consisting of handing off
connection from one eNB to another one) is used. However,
due to the backhaul constraints and potential load of radio
channels, using only the serving base station, can lead to
degraded performance as demonstrated in [7]. Therefore, in



[7], the authors propose an algorithm extending the common
handover procedure. The extension consists in modification
of handover decision by consideration of communication with
the VM assigned to the UE. Therefore, the communication
path (radio as well as backhaul) for offloading of the task
or receiving the results is selected among all eNBs in a
communication range of the UE. This algorithm, denoted as
Path Selection with Handover (PSwH), mitigates a problem of
high delay in case of mobile users.

The second approach for handling users’ mobility in MEC
is focused on migration of the VM. The VM is migrated to
a new serving eNB when the UE changes its serving eNB.
In this case, the VM is migrated closer to the UE, leading to
reduction in communication delay. An algorithm for deciding
whether and where to migrate VM is proposed in [8]. The
authors consider distance as the sole metric for decision on
VM migration. This work is further enhanced by mobility
prediction [9]. Also, the paper [9] considers the number of
UEs utilizing VM’s resources at a given eNB as a metric for
decision on VM placement. As shown in [10], a long-term
prediction can achieve accuracy of 93%. Moreover, if also
a short-term prediction is taken into account, the accuracy
can be improved to 95% [11]. Nevertheless the algorithm for
VM placement proposed in [9] still delivers offloaded task via
serving eNB selected according to radio channels.

In this paper, we extend our previous work [7], by use of
mobility prediction and we design a complementary algorithm
which decides where to place the VM. Therefore we exploit
both selection of communication path and VM placement to
solve the problem with mobility of users. The proposed solu-
tion consist of two cooperative algorithms. The first algorithm,
dynamic VM placement, decides whether there is a more
suitable placement for VM based on predicted mobility of
users and load of eNBs’ communication and computation re-
sources. The second designed algorithm, the PSwH enhanced
by mobility prediction, is used when the UE starts offloading
its task to select a suitable communication path. Note that we
do not target design of a new prediction algorithm, but we
exploit existing approaches for our algorithms as these reach
sufficient accuracy. Then, we compare the proposed algorithm
with related work to demonstrate superiority of our proposal.

The rest of this paper is organized as follows. In the next
section, we define model of the investigated MEC system. In
Section III., the proposed algorithm is described. Simulation
environment and results are presented in Section IV. Last,
Section V concludes the paper and outlines future work plans.

II. SYSTEM MODEL

In this section, the system model is presented. The system
is assumed to be composed of set S of base stations s{∈ S}.
To generalize the system model, the base station can be
represented either by macro cell (eNB), small cell (SCeNB),
or femto cell (HeNB). Unless otherwise stated, the label eNB
covers all types of base stations. For each UE, a serving eNB
s′ ∈ S is selected as the one with the highest received signal
strength (RSS). As the UE moves, the serving eNB is updated

following a conventional hard handover procedure (see [6]).
The handover introduces an interruption in communication
with a duration of DHO (known as handover delay or handover
interruption). This delay consists of time required to break
the connection with current serving eNB and to establish a
connection with a new eNB. Note that the UE can neither
transmit nor receive data during hard handover in mobile
networks.

To facilitate MEC, a VM for the UE is created at a base
station, denoted as sVM ∈ S. Number of the UEs with VM
allocated at the s-th eNB is denoted as nVMs (t), whereas
number of UEs utilizing communication resources of the s-th
eNB is denoted as ncs(t). The VM can be placed at i) eNB
selected based on offloading delay or energy and kept there
[5], ii) the serving eNB and migrated to a new serving eNB
after handover [12], iii) dynamically placed by considering
UE’s movement [9].

The offloaded task is defined by its size L (in bits), the
number of instructions to be processed B, and the size of
computed results R (in bits). As a possibility to migrate the
VM is considered, the size of the migrated VM is defined as
a number of bits G.

In Figure 1, an example of UE’s movement for two adjacent
time instances t and t+∆t is depicted. The UE communicates
with the serving eNB via radio channel with SINRs and
capacity cRs . Each eNB is connected to mobile operator’s
core network (network connection through which the eNB is
connected to the Internet) via backhaul with capacity cBs .

Figure 1. System model.

A set of eNBs with which the UE can communicate over
radio channel is denoted as I; I ⊂ S. The set I includes
the eNBs for which the SINR observed by the UE is above
SINRmin. An example of SINRmin for LTE-A network
and BLER of 10% is a value of -6.9 dB [13]. If the UE needs
to deliver an offloaded task to sVM , the transmission can be
done directly via radio if s′ 6= sVM or the offloaded task is
transmitted via radio of s′ and then via backhaul connection
between s′ and sVM . The capacity available for delivery of



the offloaded task from the UE to the eNB with allocated VM
is calculated as:

cUE,sV M
=

{
cRs′ s′ = sVM

min{cRs′ , cBs′,sV M
} otherwise

where capacity between two eNBs s′ and sVM is calculated
as cBs′,sV M

= min{cBs′ , cBsV M
} .

As prediction is considered in our model, predicted com-
munication capacity and available computing capacity (in
instructions per second) are denoted as c̃(t) and k̃(t), respec-
tively, where t is the time instance at which capacity and
computational resources are being predicted. The predicted
radio capacity is derived from predicted position of the UE
mapped to SINR maps as introduced in [14]. From information
about SINR and ncs(t), available capacity of radio is computed
as:

c̃Rs (t) = thr{MCS{SINRs(t)},
nRBs
ncs(t)

}

where MCS{SINRs(t)} maps SINR to Modulation and
Coding scheme (MCS) (e.g. by [13]), nRBs specifies the
number of all Resource Blocks (RB) of the s−th eNB and
function thr(), maps MCS and the number of RBs to the
number of bits for transmission as described in [15]. For
backhaul, the predicted capacity is calculated as c̃Bs (t) =

c̄Bs
nc
s(t) ,

where c̄Bs denotes backhaul capacity of the s-th eNB. Apart
from capacities, the predicted delay of offloading consists
of: i) delay due to uploading the offloaded task to the VM,
D̃UL
s = L

c̃UE,sV M
(t) +

∑
DHO, ii) computation delay, i.e., time

required to process the offloaded task by the VM, D̃W
s = B

k̃(t)
,

iii) delay due to collecting results by the UE from the VM,
i.e., downloading computed results from the eNB where the
VM is allocated, D̃DL

s = R
c̃sV M,UE(t) +

∑
DHO, iv) delay

of the VM migration represented by time required to copy
and start the VM from current serving eNB to a new serving
eNB, D̃VM

s = G
c̃s,sV M

(t) , v) delay of starting VM instead
of migrating VM, DAPP . As we target offloading of real-
time applications, we assume that the VM is pre-allocated
[16]. Thus, delay due to starting the VM is equal only to
delay of starting the offloaded application on the side of the
VM. Total delay of one offloaded task is then defined as
D̃T
s = D̃UL

s + D̃W
s + D̃DL

s +
∑
DVM
s +

∑
DAPP and it

is a sum of communication, computation, VM migrations and
starts of VMs.

III. DYNAMIC RESOURCE ALLOCATION

The proposed dynamic resource allocation in this paper
is based on our previous PSwH algorithm described in [7],
which exploits reward function from Markov Decision Process
(MDP) to select the communication path q. The PSwH forces
the UE to perform handover to new eNB if it is profitable
for the UE from the offloading point of view. In this paper,
we enhance the PSwH algorithm by mobility prediction and
we design cooperative algorithm for dynamic VM placement

based on calculating reward in terms of communication ca-
pacity and incorporating load balancing. Both algorithms are
based on reward function from MDP and utilize prediction
window denoted by τ .

The idea of cooperation, between algorithms in the proposal,
is to dynamically place VM before the UE starts offloading as
migration (or start) of VM when offloading has already started
would increase offloading delay by VM migration (start of
VM). Therefore, when the UE starts offloading its task, VM
will be ready at the suitable eNB. Also the UE will utilize the
PSwH enhanced with mobility prediction to select a suitable
communication path (i.e. serving eNB) in order to further
reduce offloading delay. Cooperation is achieved by starting
algorithm for dynamic VM placement in-between offloading
of two consecutive tasks, when certain radio conditions are
met (SINR is below a given threshold). As both, the PSwH
enhanced by mobility prediction and dynamic VM placement
algorithms are based on MDP, we describe its reward function.
The reward function for selection of communication path q (or
dynamic VM placement by replacing q by sVM ) is defined as:

V kπ = Pred[
∑
k

Rt|π, q] = R(q)+∑
k

T (q, π(q, k), q′)V k−1
π (q′)]

where k denotes total offloading delay in terms of discrete
time steps, R(q) denotes immediate reward for communication
over path q instead of path q′,

∑
k T (q, π(q, k), q′)V k−1

π (q′)
represents expected future payoff as a sum of rewards over k
steps, Pred represents the fact that the reward is predicted.
With respect to PsWH in [7], the reward function is based on
prediction.

As the VM have to be ready to process the offloaded task
when offloading starts [3], decision on VM placement have
to be made before offloading starts. Therefore, algorithm for
dynamic VM placement is started if in communication prox-
imity of the UE are eNBs with (SINRs > SINRsV M

|s ∈
S, s 6= sVM ).

To find the best placement of VM, SINR to set S have
to be predicted as in [9], authors consider every eNB as a
possible VM placement. However the set S could be quite
large and thus in our proposal, we define a reduced set Z{z ∈
Z|(SINRz > SINRmin) ∩ (nVMz (t) < nlimit)}. In this set
each eNB z has SINR above SINRmin. Also, the set is
further reduced by avoiding over utilized eNBs to distribute
computational load more equally.

The proposed algorithm for dynamic VM placement is
described in Algorithm 1. For each eNB in Z (step 1) and each
eNB from set I (step 2), SINR is predicted by applying SINR
map [14] on predicted UE’s mobility (step 3). Communication
capacity is predicted from predicted SINR and ncs(t)(step 4).
In order to prefer eNBs with good channel quality in the future
(next time steps), a slope of SINR is calculated as shown in
step 5 and eNBs with negative slope are discarded from set



I (steps 6 and 7). To suppress an impact of shadowing and
fast fading, the slope is calculated over a whole period of
prediction interval τ . For each VM placement, we select the
eNB with the highest available capacity (step 10) and then
eNB with the highest predicted gain in capacity is selected
for VM placement (step 13). Following selection of eNB for
VM placement, the VM migration delay is predicted (step 14)
and the option with lower delay between start of VM and VM
migration is selected (step 15).

Algorithm 1 VM dynamic placement

1: for z ∈ Z do
2: for i ∈ I do
3: predict SINRi(t, t+ ∆t, ..., t+ τ)
4: predict c̃z,i(t, t+ ∆t, ..., t+ τ)
5: α = dSINRi

dt
6: if α ≤ 0 then
7: I = I \ i
8: end if
9: end for

10: c̃z = maxi{c̃z,i}
11: end for
12: ŝVM = sVM
13: sVM = arg maxz(c̃z − c̃current)
14: D̃VM = G

c̃ŝV M ,sV M
”

15: option = min(DAPP , D̃
VM )

The enhancement of the PSwH by mobility prediction
is described in Algorithm 2. First, available capacities of
eNBs in set I are predicted (step 2) and handover vector
ρ = {ρ1, ρ2, ..., ρ|I|} is initiated by setting its elements ρi
to be 1 if eNB i is also the serving eNB (step 4) or to
1 − DHO otherwise (step 6). The handover vector is used
for modification of communication capacity to each eNB as
no data can be transferred between the UE and the eNB during
DHO. Until all required data L are transmitted (step 9), eNB
with the highest communication capacity is selected as q(t).
Also, vector ρ is modified to be in line with q(t) (step 12).

As the optimal solution for selecting VM placement and
path selection is a combinatorial problem, it is required to go
through every combination of serving eNB, VM placement,
and every step during offloading. This would have a large com-
putation complexity and therefore, in our proposal, we reduce
candidates for VM placement and path selection, Therefore, al-
gorithm for VM placement has time-complexity of O(|Z||I|τ)
and path selection O(|I|τ). Both time-complexities are lower
than time-complexity of algorithm proposed in [9].

IV. PERFORMANCE EVALUATION

In this section, models and scenario for performance eval-
uation are defined. The evaluation is carried out by means of
simulations in MATLAB.

A. Simulation scenario and models

Major parameters of the simulation, presented in Table I, are
in line with recommendations for networks with small cells

Algorithm 2 PSwH with prediciton

1: for i ∈ I do
2: predict c̃i(t, t+ ∆t, ..., t+ τ)
3: if s′ = i then
4: ρi = 1
5: else
6: ρi = 1−DHO

7: end if
8: end for
9: while L > 0 do

10: q(t) = arg maxi(c̃i(t)× (∆t · ρ))
11: L = L−max(c̃i(t)× (∆t · ρ)
12: if i = q(t) then
13: ρi = 1
14: else
15: ρi = 1−DHO

16: end if
17: t = t+ ∆t
18: end while

as defined by 3GPP in [17]. We also follow parameters of the
physical layer and frame structure for LTE-A mobile networks
defined in the same document.

Signal propagation is modeled according to 3GPP [17] with
path loss model PL = 128.1 + 37.6log10(d), where d is a
distance between the UE and the eNB. A mapping function
between SINR and MCS [13] with BLER=10%. The backhaul
of eNBs is modeled as optical fiber with capacities (in Mbit/s)
generated from normal distribution with µ = 100 and σ2 = 2.

Since we target to real-time applications, offloaded task has
a size of 200 kB (as in [18] authors consider task to be in tenths
of kB) and its arrival rate is specified by λ. The size of data
transferred during VM migration (data in RAM of offloaded
task) is 20 MB. Time before VM is prepared to process an
offloaded task (start time) is 500 ms, which consist only of
starting an offloaded application at the VM.

Radio and backhaul resource allocation is done by round-
robin scheduling.

We assume the hexagonal grid of 19 eNB like in [9] and
we further drop 57 HeNBs into the simulation area. There are
200 UEs moving within the area of all eNBs.

B. Performance evaluation

In our simulations, the proposed algorithm is compared with
three competitive algorithms:
• SO [12] - The VM is kept at the serving eNB, so the VM

is migrated each time handover is performed.
• Wang’s algorithm [9] - VM placement is based on pre-

dicted future costs of its placement.
• PSwH without prediction [7] Communication path (serv-

ing eNB) is selected so that communication delay is
minimized.

In Figure 2 we show the average offloading delay (con-
sisting of uploading offloaded task, computing, and collecting
results) of the task in dependency on task inter-arrival rate



TABLE I. Simulation parameters

Parameter Value
Simulation area 800 x 800 m
Carrier frequency 2 GHz
Bandwidth for downlink/uplink 10/10 MHz
Tx power of eNB/SCeNB/UE 27/15/10 dB
Number of eNB/SCeNB 19/57
VM size/start time 20 MB/500 ms
Offloaded task/results size 200/200 kB
Offloaded task number of instructions 1e6 instructions
eNB/SCeNB CPU 3300 MIPS
Prediction window τ /Wang’s algorithm 20s/60s
Prediction accuracy 90%
Shadowing factor 6 dB
Handover interruption duration 30 ms
Number of UEs 200
Speed of users 1 m/s
Backhaul capacity-Normal distribution µ = 100, ρ2 = 2 Mbit/s
Simulation time T 2 000 s
Number of simulation drops 10 drops

(λ). From this figure, we can see that with decreasing λ,
the average offloading delay increases as the load of commu-
nication and computation resources increases. The proposed
algorithm reduces the average offloading delay significantly
comparing to all competitive algorithms. For lightly loaded
network (λ = 40s), the average offloading delay is reduced
by the proposed algorithm by 27.3%, 15.6%, and 9.7% with
respect to the SO, Wang’s algorithm, and PsWH, respectively.
For heavily loaded network (λ = 10s) the gain is 30.5%,
29.2%, and 26.6% with respect to the SO, Wang’s algorithm,
and PsWH, respectively. The gain is caused by cooperation
between VM placement and path selection according to pre-
dicted situation in the network.

Note that results for the SO and Wang’s algorithm for
λ < 10s are not depicted as these algorithms cannot handle
such load of network as delay of tasks can lead to tasks
being buffered at the UE and thus leading to congestion
of communication and computation resources. The proposal,
by combining both VM placement and path selection avoids
over utilized eNBs a thus works even for λ = 1s. The
proposal outperforms all compared algorithms as compared
to the PsWH, which has the second lowest delay, reduces
offloading delay by up to 66%.

In Figure 3, we compare CDF of the average offloading
delay for λ = 10s. We show CDF for λ = 10s as it corre-
sponds to heavily loaded network, which is more challenging
than lightly loaded network.

The offloading delays reached by UEs in case of the SO,
Wang’s algorithm, and PsWH are spread significantly from
relatively low values (115 ms) to extremely high delays not
acceptable for real time services (even more than 2s). Contrary,
the proposed algorithm offers stable delay around 200 ms for
almost all UEs. For example, the delay experienced by 95% of
UEs is below 250ms for the proposal while competitive SO,
Wang’s algorithm, and PsWH requires 610ms (144%more),
610ms (144% more), 500ms (100% more), respectively. Con-
sequently, almost all UEs exploiting the proposed algorithm
can exploit real-time services with high quality.

Figure 2. Average times required to offload, compute and
collect results of the offloaded task.

Figure 3. CDF of the task offloading delay for λ = 10s.

In Figure 4, comparison of average energy consumed by
the UE for communication of a single task is shown. With
decreasing λ, consumed energy increases as offloading delay
is higher due to increased network load and relation between
UE’s energy consumption and delay [19]. From Figure 4, we
can see, that the PsWH is the most energy hungry and it
consumes between 10.7% and 188% more energy than the
proposed algorithm. The SO and Wang’s algorithm require
less energy (up 9%) per offloaded task than the proposed
algorithm if the network is lightly loaded (λ > 15s). Contrary,
for heavily loaded network (λ < 15s), the proposed algorithm
becomes more energy efficient (saving of 9%). The reason
for increase in energy consumption by the proposal at light
network load is the fact that the proposed algorithm targets
solely on offloading delay and disregard energy consumption.
Extension towards consideration of the energy consumption is
considered as a future work. Note also that the SO and Wang’s
algorithm cannot serve tasks with λ lower then 10s.

In Figure 5, we show CDF of the energy spent by the UE for
communication for λ = 10s. The energy consumption reached
by the SO and Wang’s algorithm is spread more wide so
energy consumption of some UEs is reduced comparing to the



Figure 4. Average energy consumption of UE communication.

Figure 5. CDF of energy consumed for communication for
λ = 10s.
proposed algorithm while some UEs consumes significantly
more energy. This shows fairness of the proposed algorithm
among users and there are no users significantly punished for
unfair allocation of resources for computation. The energy
consumed by 95% UEs is below 8.61J for the proposal
while competitive SO, Wang’s algorithm, and PsWH consumes
15.3J (77.7%more), 15.3J (77.7% more), 16.3J (89.3% more),
respectively.

V. CONCLUSION

In this paper, we have proposed an algorithm for dynamic
allocation of computing and communication resources for
Mobile Edge Computing. The algorithm dynamically places
VMs considering load of eNBs and selects communication
path between the UE and the eNB with allocated VM. The
algorithm is based on MDP and exploits mobility prediction.

Comparing to state of the art approaches, the proposed
algorithm reduces the offloading by 10-66%. The superiority
of the proposed algorithm is more notable for high arrival rate
of the offloading requests, i.e., for heavily loaded network. At
the same time, the energy consumed by the UEs for offloading
is kept at similar level as for the state of the art algorithms.
The proposed algorithm also balances fairness among users in

terms of experienced delay and energy consumption so that all
UEs can exploit real-time services even for very high arrival
rates of the offloading requests.

In the future, we will focus on extension of the algorithm
towards energy consumption awareness.
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