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ABSTRACT Time-varying requirements of users on communication push mobile operators to increase
density of base stations. However, the dense deployment of conventional static base stations (SBSs) is not
always economical, for example, when periods of peak load are short and infrequent. In such cases, several
flying base stations (FlyBSs) mounted on unmanned aerial vehicles can be seen as a convenient substitution
for the dense deployment of SBSs. This paper focuses on a maximization of user satisfaction with provided
data rates. To this end, we propose an algorithm that associates users with the most suitable SBS/FlyBS
and finds optimal positions of all FlyBSs. Furthermore, we investigate the performance of two proposed
approaches for the joint association and positioning based on the genetic algorithm (GA) and particle swarm
optimization (PSO). It is shown that both solutions improve the satisfaction of users with provided data rates
in comparison with a competitive approach. We also demonstrate trade-offs between the GA and the PSO.
While the PSO is of a lower complexity than the GA, the GA requires a slightly lower number of active
FlyBSs to serve the users.

INDEX TERMS Flying base station, genetic algorithm, mobile networks, particle swarm optimization,
UAV, user satisfaction.

I. INTRODUCTION

THE increasing requirements of mobile users on wireless
communication call for an ultra-dense deployment of

static base stations (SBSs) [1]. However, this solution is
not always reasonable from an economic point of view.
An example of an uneconomical case is an event in which
people stay for a short period of time (a few hours) and
then move away. This situation occurs mostly during large
social events, such as live concerts or sport activities. In
these cases, exploitation of the BSs mounted on unmanned
aerial vehicles (UAVs), also known as flying BSs (FlyBSs),
is beneficial [2]. Nevertheless, a deployment of the FlyBSs
brings many challenges, such as finding an optimal position
of each FlyBS, properly associating user equipments (UEs) to
the FlyBSs [3], mitigating interference [4], [5], and deciding
how many FlyBSs should be deployed in a given area [6], [7].

The current research addressing the problem of FlyBS
positioning can be divided into works dealing with a single

FlyBS or those concerning multiple FlyBSs. The positioning
of a single FlyBS is considered in, e.g., [2], [8]–[11]. The
objective of the authors in [8] is to find the optimal position
of the FlyBS to maximize the data rate of the UE. The
FlyBS is seen as a relay between the SBS and the UE.
The goal is, then, achieved by a designed algorithm, which
finds a position of the FlyBS so that line of sight (LOS)
communication takes place on both BS-FlyBS and FlyBS-
UE links. The optimal 3D placement of the FlyBS to provide
coverage to all UEs is proposed in [9]. The authors derive
an optimal position of the FlyBS based on a geometry and a
path loss model for a single FlyBS. Similarly, in [10], the
authors propose an optimal 3D placement algorithm for a
single FlyBS. The algorithm performs an exhaustive search
over a closed region to find the 3D position of one FlyBS.
The authors assume heterogeneous quality of service (QoS)
requirements, represented by signal to noise ratio (SNR).
The positioning is investigated also in [2], where the authors
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confirm improvement in channel quality, throughput, and
energy efficiency by the FlyBS positioned according to the
UEs’ requirements in a scenario with the UEs moving in a
crowd. A joint optimization of the FlyBS’s position, band-
width allocation, transmission power, and transmission rate
is proposed in [11]. The authors transform a non-convex op-
timization problem into a monotonic optimization and solve
the problem via the polyblock algorithm [12]. A drawback
of all above-mentioned works ( [2], [8]–[11]) is that these
assume just one FlyBS, and their extension toward multiple
FlyBSs is neither easy nor straightforward.

The positioning of multiple FlyBSs is proposed, for ex-
ample, in [13], where the objective is to provide SNR above
a predefined threshold. The authors solve the positioning via
linear programming. The drawback of the proposed approach
is that it does not take interference into account. Thus,
without managing the problem of interference (e.g., by inter-
ference alignment technique [14]), such simplification leads
to a general coverage optimization problem (as addressed
in [15]–[20]). The interference among individual FlyBSs is
assumed in [21], where the authors propose an algorithm for
optimization of the FlyBSs’ 3D positions. Thus, when com-
pared to the previous papers, the positioning of the FlyBSs
is based on signal to interference plus noise ratio (SINR) of
the UEs instead of SNR. The authors focus on the stochastic
geometry approach; however, actual data requirements of the
UEs are not considered.

Furthermore, evolutionary algorithms [22] can be ex-
ploited for the positioning of FlyBSs, as considered in [23]–
[25]. To be more specific, the authors in [23] adopt particle
swarm optimization (PSO) [26] for the positioning. The
PSO finds an optimal solution via an evolutionary process
inspired by nature, which acts similar to the flocking of
birds or swarms of insects. The authors in [23] propose
an algorithm for the positioning of the FlyBSs to provide
coverage to all UEs, considering connection quality of the
FlyBSs’ backhaul. The authors focus on a provisioning of a
certain level of SINR for the UEs, but they do not consider the
allocation of bandwidth to the UEs. The PSO is also exploited
in [24], where the authors find an optimal placement of the
FlyBSs to satisfy the UEs’ required SINR with a minimum
number of the deployed FlyBSs. However, the authors do
not tackle the problem of bandwidth allocation, which is a
critical factor to satisfy the data rates required by the UEs.
Furthermore, the authors define SINR requirements as the
ratio of the area covered by two or more FlyBSs to the
sum of the FlyBSs’ coverage areas. Such definition leads to
coverage optimization instead of UE data rate satisfaction.
Another evolutionary algorithm, the genetic algorithm (GA)
[22], is used in [25] for an optimization of the trajectories
of the UAVs. The authors show that the proposed solution
based on the GA is efficient and can be run on a graphical
processing unit (GPU), exploiting parallel architecture of the
GPU. However, the paper does not consider communication
of the UAVs with the UEs.

Regarding the problem of the UEs’ association to the Fly-

BSs, the authors in [27] propose two algorithms to partition
an area served by the FlyBSs via association of the UEs to
the FlyBSs. The objective of the first algorithm, based on
optimal transport theory, is to maximize a fairness of the
UEs’ data rates under a hovering time constraint. The purpose
of the second iterative algorithm is to determine a minimal
hovering time to satisfy the UEs’ data rate requirements.
Nevertheless, the positioning of the FlyBSs to improve the
UEs’ satisfaction is not addressed in [27].

The main disadvantage of all above-mentioned works is
that these try to either solely optimize positioning of the
FlyBSs or association of the UEs. Nonetheless, the position-
ing of the FlyBSs and the association of the UEs should be
optimized jointly, as these two challenges are closely related.
The joint positioning of the FlyBSs and association of the
UEs is addressed in [28], where the problem is translated into
a clustering problem. This problem is solved by the k-means
algorithm, which determines positions of the FlyBSs and
associations of the UEs, respectively. The k-means clusters
the UEs and associates them to the FlyBSs based on the
Euclidean distance. However, the k-means does not incorpo-
rate any information regarding the communication channel,
which is of paramount importance for the deployment of the
FlyBSs.

In this paper, we focus on a joint solution for the position-
ing of the FlyBSs and the association of the UEs, exploiting
also information related to the communication channel. We
propose two novel algorithms for the joint positioning and
association, considering the UEs’ requirements on data rates.
The first developed algorithm for the joint positioning and
association is based on the PSO, while the second exploits
the GA. Unlike other works, our objective is to maximize the
UEs’ satisfaction with the provided data rates. We show that
the proposed joint positioning and association based on both
PSO and GA notably outperforms a competitive state-of-the-
art algorithm if the same amount of FlyBSs is deployed. We
also discuss trade-offs between the PSO-based and GA-based
solutions and assess their pros and cons.

The remainder of this paper is organized as follows. In
the next section, we define system model and formulate the
problem. In Section III, the proposed algorithms for the asso-
ciation and the positioning are described, and implementation
aspects are discussed. The simulation scenario, a description
of the competitive algorithm, and the performance evaluation
are provided in Section IV. The last section summarizes
major conclusions.

II. SYSTEM MODEL AND PROBLEM FORMULATION
In this section, we first define the system model for the
positioning of the FlyBSs and for the association of the UEs.
Then, we formulate the objective of the paper.

A. SYSTEM MODEL
We consider a set NNN of N UEs, where n ∈ NNN is a specific
UE, a set KKKS of KS representing conventional SBSs, and a
setKKKF ofKF corresponding to the FlyBSs. Furthermore, we
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define a set of all base stations (BSs) asKKK =KKKS ∪KKKFwith
K = KS + KF representing the total number of BSs.
Note that the label "BS" represents both the SBSs and the
FlyBSs in this paper. The positions of the BSs are defined as
VVV = {vvv1, vvv2, . . . , vvvK}, where vvvk ∈ R3, k ∈ KKK represents a
position of the k-th BS. In the same way, we define a set of the
UEs’ positions UUU = {uuu1,uuu2, . . . ,uuuN} with the position of
the n-th UE denoted asuuun ∈ R3, n ∈NNN . An activity status of
the BS is indicated by a binary parameter, ρρρ = {ρ1, . . . , ρK}.
Setting ρk = 1 and ρk = 0 means that the k-th BS is being
turned on and off, respectively.

The n-th UE and the k-th BS communicate over a radio
channel, with SINR defined as:

γn,k =
ρkP

tx
k |hn,k (uuun, vvvk) |2

βn,kσ2 +
∑
l∈KKK,l 6=k ρlP

tx
l |hn,l (uuun, vvvl) |2

, (1)

where P txk is the transmission power of the k-th BS,
hn,k(uuun, vvvk) is the channel realization between the k-th BS
and the n-th UE, σ2 is the noise power, and βn,k ∈ βββ|βn,k ∈
{0, 1},∀n ∈ NNN,∀k ∈ KKK is the amount of bandwidth
allocated for communication of the n-th UE with the k-th
BS. The matrix βββ ∈ BBB contains the bandwidth allocations of
all BSs, with BBB representing a set of all feasible bandwidth
allocations. Note that SINR is calculated only for active BSs
(i.e., the BSs with ρk = 1). The bandwidth allocation also
contains information about the UE’s association to the BSs.
The UE is considered to be associated to the BS to which it
has non-zero βn,k. We assume that the UE is associated to
a single BS (i.e., the bandwidth for each UE is allocated at
most to one BS). Then, the data rate provided by the k-th BS
to the n-th UE via channel with the bandwidth Bk is defined
as:

cn,k = βn,kBklog2 (1 + γn,k) (2)

B. OBJECTIVE FORMULATION
Our objective is to find the positions of the FlyBSs and
associate the UEs to the BSs in order to maximize the number
of UEs satisfied with their experienced data rate. Without loss
of generality, we focus on downlink direction. Note that the
n-th UE is assumed to be satisfied if it experiences data rate
cn,k equal to or higher than the minimum required data rate
cminn (i.e., the UE is satisfied if cn,k ≥ cminn ). The BSs that
are unused or cannot improve the UEs’ satisfaction are turned
off to save energy. Thus, our objective is to determine the
optimal positions of the FlyBSs VVV ∗, the association of the
UEsβββ∗ (represented via bandwidth allocation), and the status
of the BSs (on/off) ρρρ∗. This objective is formulated as:

βββ∗,VVV ∗, ρ∗ρ∗ρ∗ = argmax
βββ∈BBB,VVV ∈R3×K ,ρk∈{0,1}

∑
n∈NNN

∑
k∈KKK

[
cn,k ≥ cminn

]
(3)

subject to
∑
n∈NNN

βn,k ≤ 1,∀k ∈KKK, (4)∑
k∈KKK

[βn,k > 0] ≤ 1,∀n ∈NNN, (5)

where the operator [.] is equal to 1 if the condition (e.g.,
cn,k ≥ cminn ) is fulfilled, otherwise it is equal to 0. The
constraint (4) ensures that the BSs do not allocate more
bandwidth than available. Furthermore, the constraint (5)
ensures that each UE can be associated to a maximum of one
BS.

III. PROPOSED SOLUTION
The defined objective is an NP-hard problem (due to its
definition as a non-convex function). Hence, to find the
optimal positions of the FlyBSs, we exploit two evolutionary
algorithms: GA and PSO [22]. The evolutionary algorithms
iteratively search for the optimum within the search space,
using several operations introduced later in this section.

First, we describe a general algorithm for the association
of the UEs to the BSs, including a bandwidth allocation and
a decision on the number of active BSs. Then, we integrate
the association algorithm into the proposed algorithms for
positioning of the FlyBSs based on the PSO and the GA, re-
spectively. Last, a discussion of the practical implementation
aspects is provided at the end of this section.

A. ASSOCIATION OF THE UES AND BANDWIDTH
ALLOCATION
The objective of the UEs’ association is to determine the
serving BS for each UE and to allocate bandwidth to the
UEs to satisfy the UEs’ required data rates cminn (i.e., each
UE is allocated exactly with the bandwidth required to reach
the cminn ). Then, based on the association, we decide which
BSs should be turned off, as those BSs do not improve the
UEs’ satisfaction. Note that we do not target a problem of
minimization of the number of active BSs. Such a problem is
not straightforward, and possible extension of our proposed
algorithms is left for future research.

The proposed association of the UEs and the bandwidth
allocation is described in Algorithm 1. In the initial phase, the
active FlyBSs are randomly deployed within the area (line 1).
The SINR between each BS and UE is calculated according
to (1) from a path loss model, following the same approach
as the authors in [23] (line 4).

Then, the n-th UE is temporarily associated to the serving
BS sn (i.e., to the BS with the highest experienced SINR to
minimize the bandwidth required to satisfy the UE’s cminn

(line 6)). Based on the temporal association, a set of vectors
AAA = {AAA1,AAAk, . . . ,AAAK} is created. Each vector AAAk from AAA
represents a list of the UEs associated to individual BSs. The
list of UEs is created by adding the n-th UE to the vectorAAAsn
corresponding to the serving BS sn (i.e., AAAsn ← AAAsn ∪ n
(line 7)). Next, we create the set KKK ′ containing indices of
the set AAA sorted according to the number of UEs served
by each BS in descending order (line 9). For purposes of
the bandwidth allocation in the next steps, a temporal set,
NNN ′ ⊆ NNN , is created (line 10). Subsequently, AAAk is emptied
for each BS in KKK (line 11). Based on the ordered set KKK ′,
the bandwidth for communication is allocated to the UEs to
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fulfill the UEs’ data rate requirements. The BSs allocate the
bandwidth until no bandwidth is left (lines 13 to 24).

The bandwidth is allocated according to the UEs’ SINR
in descending order (i.e., the UE with the highest SINR is
allocated first). In terms of the algorithm, the UE n∗ with the
highest γn∗,k′ is selected first (line 15). Next, the bandwidth
required to satisfy the UE n∗ at the k-th BS is calculated
as βreq = cminn∗ /log2 (1 + γn∗,k′) (line 16). If the k′-th BS
has enough bandwidth, the βreq is allocated to the UE n∗

and the UE n∗ is associated to the k’-th BS (lines 17 to 19).
The associated UE n∗ is removed from the set NNN ′, and the
available bandwidth of the k′-th BS is updated (lines 20
and 21). The bandwidth allocation continues until there is not
enough remaining bandwidth that can satisfy any UE. Then,
the remaining bandwidth of each BS is divided among all
the UEs served by the given BS (line 25). Finally, bandwidth
allocation is divided by the Bk to obtain normalized band-
width allocation βn,k (line 27), and the BSs serving no UE
are turned off (line 28).

Algorithm 1 Association of UEs and bandwidth allocation.

1: Deploy FlyBSs by generating random positions VVV ; set
ρk = 1,∀k ∈KKK.

2: for n ∈NNN
3: for k ∈KKK
4: Calculate γn,k via (1).
5: end for
6: sn ← argmaxk∈KKK γn,k
7: AAAsn ← AAAsn ∪ n
8: end for
9: KKK ′ ← indices ofAAA sorted in descending order.

10: NNN ′ ←NNN
11: AAAk ← ∅,∀k ∈KKK
12: for k′ ∈KKK ′
13: while Bk′ > 0
14: for n ∈N ′N ′N ′
15: n∗ ← argmaxn∈NNN ′ γn,k′

16: βreq =
cmin
n∗

log2(1+γn∗,k′)
17: if Bk′ ≥ βreq
18: βn∗,k′ ← βreq

19: AAAk′ ← AAAk′ ∪ n∗
20: NNN ′ ←NNN ′\n∗
21: Bk′ ← Bk′ − βreq
22: end if
23: end for
24: end while
25: βn′,k ← βn′,k +

Bk′
|AAAk′ |

,∀n ∈ AAAk′
26: end for
27: βn,k ←

βn′,k
Bk

,∀k ∈ K
28: {ρk ← 0|∀k′ ∈KKK ′,AAAk′ = ∅}

B. POSITIONING OF FLYBSS VIA PARTICLE SWARM
OPTIMIZATION

In this subsection, we describe the proposed algorithm for
optimization of the FlyBSs’ positions based on the PSO and
its integration with the association. We exploit a common
PSO described in [26] and adapt it to the objective defined
in (3). The PSO searches for the optimal solution via a set of
l ∈ L particles {WWW 1(t),WWW 2(t), . . . ,WWWL(t)} over iterations
represented by the discrete time t. In our case, each particle
contains the positions of all FlyBSs (i.e., WWW l(0) = VVV ). The
search is done by updating the positions of the FlyBSs via a
velocity vectorDDDl(t) calculated as:

DDDl(t) = φDDDl(t− 1) + cpφ1
(
WWW l,local −WWW l(t− 1)

)
+

cgφ2
(
WWW global −WWW l(t− 1)

)
,
(6)

where φ is the inertia weight determining the convergence
speed, φ1 and φ2 are positive random variables, and cp and cg
are the personal and global learning coefficients, respectively.
The velocity vector represents a weighted sum of the previous
velocity vectorDDDl(t−1), the difference between the FlyBSs’
positions of the l-th particleWWW l(t−1), and the l-th particle’s
local best solutionWWW l,local (i.e., historically the best FlyBSs’
positions of the l-th particle), and the difference between the
l-th particleWWW l(t− 1) and the global best solutionWWW global.
The global best solution WWW global contains the best particle
(i.e., the position of the FlyBSs with the highest targeted
metric) out of all particles L, up to the current iteration t. In
our objective,DDDl(t) is a directional vector of the l-th particle,
represented by the positions of all FlyBSs between the time
instants t and t − 1. Note that DDDl(t) is calculated separately
for each FlyBS of the l-th particle.

An example of the FlyBS position update is shown in
Figure 1, where a single selected FlyBS at a position from the
corresponding l-th particle WWW l(t − 1) is updated by DDDl(t),
considering the local and the global best positions of the
selected FlyBS according to (6).

Each particle has its suitability represented by a cost
function stored inQl. The suitability of the FlyBSs’ positions
and the UE’s association of the l-th particle is defined by
the cost function Ql, reflecting our objective to maximize the
UEs’ satisfaction according to (3). Thus, the cost function is

D
l
(t)D

l
(t-1)

W
l
(t-1)

W
l
(t)

W
l,local

W
global

FIGURE 1: Update of FlyBS position via the proposed
algorithm based on PSO.
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formulated as:

Ql =

{∑
n∈NNN

∑
k∈KKK cn,k if cn,k ≥ cminn ,∀n ∈ N∑

n∈NNN
∑
k∈KKK

[
cn,k ≥ cminn

]
otherwise.

(7)
The search for the optimal solution of the objective func-

tion is then achieved by updating the positions of the FlyBSs
corresponding to each particle WWW l(t) via a maximization of
the particles’ local best cost (Ql,local) and a global best cost
(Qglobal). In other words, the new position of the FlyBS is
determined based on the best position of the given FlyBS
represented by the l-th particle in the past, and the FlyBS’s
best position among all particles L. If all UEs are satisfied
with the provided data rates, the remaining bandwidth is
allocated to the UEs so that the sum of the UEs’ data rates
is maximized.

The proposed algorithm for the positioning based on the
PSO with integration of the UEs’ association is described
in Algorithm 2. The PSO algorithm starts with the updated
association with the unused BSs turned off (as explained in
the previous subsection) (line 1). Based on the association,
the particles are initialized (line 2). Then, the cost function
of each particle is calculated via (7) (line 3). The particle
with the highest cost is set as WWW global and the cost of this
particle is set to Qglobal (lines 4 and 5). Then, the PSO
iteratively updates the FlyBSs’ positions until a maximum
number of iterationsMit is reached (line 8). For each updated
FlyBSs’ position, the UEs’ are re-associated (lines 9). Based
on the updated FlyBSs’ positions and the UEs’ association, a
suitability of the particle is evaluated via the cost function (7)
(line 10). Then, we check if the updated positions improve
the local solution (lines 11 to 13) or even the global solution
(lines 15 to 17). Once all Mit iterations are completed, the
WWW global contains the set of FlyBSs’ positions with the highest
cost (suitability).

C. POSITIONING OF FLYBSS VIA GENETIC ALGORITHM
In this subsection, we describe the proposed algorithm for
optimization of the FlyBSs’ positions based on the GA. We
exploit a common GA described in [22] and adapt it to the
optimization problem defined in (3). The GA consists of a
population GGG = {ggg1, . . . , gggL} with a size L. The population
is composed of individuals gggl representing possible solutions
(i.e., sets of the positions of the FlyBSs). Each individual
consists of genes ggglk corresponding to the positions of FlyBSs
(i.e., ggglk = vvvk).

The first step of the GA is to generate an initial population
with the size L. After that, a crossover operation inherent
to all genetic algorithms is applied to the initial population.
The crossover operation is understood as a mechanism during
which new offspring are created from two selected parents.
While each parent represents one of the previous positions
of the given FlyBS, the new offspring defines a new possible
position of the FlyBS. The selection of the parents j1 and j2
is done via roulette wheel selection (RWS). The RWS selects
parents based on their probability of survival defined by the

Algorithm 2 PSO for FlyBS positioning & UEs’ association

1: Associate UEs & allocate bandwidth by Algorithm 1
with unused BSs turned off.

2: Initialize particlesWWW l(0), l = 1, . . . , L based on assoc.
3: Ql,local ← Ql

(
WWW l(0)

)
via (7)

4: Qglobal ← argmaxl∈LQ
l,local.

5: WWW global ← argmaxl∈LWWW
l(0).

6: for t = 1, . . . ,Mit

7: for l = 1, . . . , L
8: WWW l(t) =WWW l(t− 1) +DDDl(t) via (6).
9: Assoc. UEs & alloc. bandwidth by Algorithm 1

with unused BSs turned off.
10: Ql(t)← Ql

(
WWW l(t)

)
via (7).

11: if Ql(t) > Ql,local

12: Ql,local ← Ql(t)
13: WWW l,local ←WWW l(t)
14: end if
15: if Ql,local > Qglobal

16: Qglobal ← Ql,local

17: WWW global ←WWW l,local

18: end if
19: end for
20: end for

cost function [29]. In our algorithm, the RWS is implemented
by choosing the parent j via {j ∈ Z, j ≤ L|

∑l=j
l=1 Fl ≥ ω}

(i.e., by selecting a parent with fitness Fl equal to or larger
than ω). The ω is selected randomly with uniform distribu-
tion U(0, 1), and Fl is determined from the fitness function
defined as:

Fl =
e
− Ql

max{Ql}∑
l∈L e

− Ql

max{Ql}

(8)

where Ql is the normalized cost of the l-th individual cal-
culated as Ql = Ql∑

l∈LQ
l . Note that for the GA, we use the

same cost function as expressed for the PSO in (7).
The number of offspring (new possible positions of the

FlyBS) generated by the GA in each iteration is defined
as bLpcc, where pc is the crossover ratio representing a
percentage of the whole population selected as the parents.
The positions of the FlyBSs belonging to the selected parents
are combined via an arithmetic recombination. This means
the generated positions of the FlyBSs are influenced by a re-
combination parameter α denoting portions of the positions,
which are taken from each of the selected parents. The pa-
rameter α is selected randomly from the uniform distribution
U(0, 1), following an arithmetical crossover [29], where each
offspring inherits a part of each parent’s position.

The principle of crossover operation is illustrated in Fig-
ure 2a, where two new offspring l1 and l2 (i.e., new possible
positions of the FlyBS) are generated from the selected
parents j1 and j2 (i.e., positions of the FlyBS in the past). The
crossover operation takes positions of the parents vvvj1k and vvvj2k
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l
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m

δ 
k

(b)

FIGURE 2: Update of the FlyBS position by the proposed
algorithm based on genetic algorithm via: a) crossover and
b) mutation.

and modifies them as follows:

vvvl1k =
(
αvvvj1k + (1− α)vvvj2k

)
(9)

vvvl2k =
(
αvvvj2k + (1− α)vvvj1k

)
(10)

To preserve a diversity in the population, a mutation is
exploited besides the crossover operation. The mutation cor-
responds to the process during which the position of the
FlyBS (vvvlk) is modified by a vector ~δk as follows:

vvvmk = vvvlk +
~δk,∀k ∈KKKF (11)

The value of ~δk is limited by the FlyBSs’ deployment area
(i.e., simulation area). Note that a direction of the vector ~δk
is selected randomly. In our case, the mutations are applied
on randomly selected individuals with a probability pm (i.e.,
bL (L+ Lpc) pmc mutants are generated in each iteration).
The principle of mutation is depicted in Figure 2b, where the
l-th FlyBS with the position vvvlk generates a mutant m with a
new position corresponding to vvvmk .

After the crossovers and mutations, whole population (i.e.,
parents, offspring, and mutants) is evaluated via the fitness
function (8) to select proper individuals (i.e., sets of positions
of the FlyBSs) for the new iteration.

The proposed GA solution exploiting the defined opera-
tions (crossover, mutation, etc.) is described in Algorithm 3.
The algorithm is initialized by updated association with un-
used BSs turned off by Algorithm 1 (line 1). The population
GGG is then generated based on the association (line 2) with the
cost of each individual determined according to (7) (line 3).
The crossovers and mutations are applied to the positions of
FlyBSs in the GGG (lines 6 and 7) to generate new possible
solutions (i.e., sets of positions of the FlyBSs) within the
constrained area of search for the optimum. Due to the
updated positions of the FlyBSs, the UEs’ association and
the bandwidth allocation are updated as well. The UEs are
associated by considering only the BSs that are turned on
(line 8). The cost of the updated population is calculated
via (7) (line 9). Based on the fitness function (8), the fittest

individuals are selected for the next iteration (line 11). If
the population is not diverse (i.e., the cost of all individu-
als is the same), the mutation percentage pm is increased
to pmutate,high to avoid premature convergence to a non-
optimum solution; otherwise, pm is kept at pmutate (line 12).
Then, the individual with the highest cost Ql (suitability) is
selected as the most suitable solution (line 13).

Algorithm 3 GA for FlyBS positioning & UEs’ association

1: Assoc. UEs & allocate bandwidth by Algorithm 1 with
unused BSs turned off

2: Initialize populationGGG based on association
3: Calculate cost Ql of gggl,∀l ∈ L via (7)
4: for t = 1, . . . ,Mit

5: for l = 1, . . . , L
6: Apply crossovers via (9) and (10).
7: Apply mutations via (11).
8: Assoc. UEs & alloc. bandwidth by Algorithm 1

with unused BSs turned off
9: Calculate cost Ql of gggl,∀l ∈ L via (7)

10: end for
11: Select the fittest individuals to next iteration via (8)
12: Check population diversity and adjust pmutate.
13: ggg∗ ← argmaxl∈L cost

(
gggl
)

14: end for

D. PRACTICAL IMPLEMENTATION ASPECTS
In this subsection, we discuss aspects related to implemen-
tation of the UEs’ association and the positioning of the
FlyBSs. First, we focus on the mobile network entities where
the algorithms for the joint positioning and association can
be deployed and run. The most straightforward option is to
implement the algorithm directly at the FlyBSs. On one hand,
this option leads to a low latency of determining FlyBSs’
positions and UEs’ association, since the FlyBSs just ex-
change control information among themselves, and there is
no need to communicate with the core network. On the other
hand, this solution also drains batteries of the FlyBSs; thus,
the operational time of the FlyBSs is reduced. Although the
common UAVs, such as quad- or hexa-copters, can fly several
hours if they are powered with hydrogen cells, any additional
energy consumption is undesirable [2]. Thus, running the
proposed algorithm directly at the FlyBSs is limited only to
the scenarios where a short operation time of the FlyBSs is
not a problem.

The second option is to run the algorithm in a fixed
infrastructure, such as common SBSs, core network, or a base
band unit (BBU) if the Cloud-Radio Access Network (C-
RAN) is deployed [2]. In this case, the energy required to run
the proposed algorithm for the positioning and association
is not that critical. However, the latency (especially if the
algorithm is run in the BBU connected through a non-ideal
fronthaul [30]) is the main concern here and can result in
incorrect positioning of the FlyBSs. As a consequence, this
option is preferable if a higher latency does not degrade the

6 VOLUME 4, 2016



Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

performance of the proposed algorithm, such as for slow-
moving UEs (pedestrians), where the delay on the order of
tens of milliseconds plays no role due to the slow movement
of the UEs.

The proposed algorithms require information about the
UEs’ positions (these are assumed to be known in, e.g.,
[8] or [10]), their required data rates, and environment for
estimation of the propagation losses (such as [31] or [32])
to determine the SINR for a given FlyBS’s positions (as
assumed, e.g., in [23] and outlined in [8]). The required data
rate is known to the network, as this information is required
for scheduling. The UEs’ positions represent overhead on the
order of tens of bytes, which is negligible.

IV. SIMULATION SCENARIO AND PERFORMANCE
EVALUATION
Performance of the proposed solution is analyzed and com-
pared with a competitive solution by simulations conducted
in MATLAB.

A. SIMULATION SCENARIO
We assume a scenario in which the deployment of the FlyBSs
is meaningful (i.e., the UEs benefit from increased data rate
satisfaction). Thus, four small-cell SBSs (i.e., KS = 4), with
transmission power of 15 dBm, are deployed at positions
[400 400, 400 1200, 1200 400, 1200 1200] in a simulation
area of 1600 m x 1600 m, as shown in Figure 3. Moreover,
up to twenty FlyBSs (i.e., KF = 20), with the same
transmission power as the SBSs, are deployed in the same
area. The deployment of both the FlyBSs and the SBSs
emulates a realistic case in which the FlyBSs cooperate with
existing infrastructure, and interference among the FlyBSs
and the SBSs plays an important role in the association and
positioning. Thus, we also assume that all BSs transmit on
the same frequency (i.e., each BS interferes with other BSs).
A signal propagation for the SBSs is modeled according to
[33] with path loss model PL = 128.1 + 37.6log10d, where
d is a distance between the UE and the SBS. For the FlyBSs,
we select a commonly used path loss model from [31], with
Suburban environment parameters from [34]. A connectivity
of the FlyBSs to the core network of the operator is assumed
to be of a sufficient capacity to transfer all the UEs’ data
transmitted over the access link (from the UE to the FlyBS)
as expected (e.g., in [2] and [35]). The major parameters of
the simulations are summarized in Table 1.

B. PERFORMANCE EVALUATION
In this section, we provide a performance evaluation of the
proposed solutions. The performance of the proposed algo-
rithms based on GA and PSO is compared with a commonly
exploited k-means algorithm (see, e.g., [28]) extended with
the bandwidth allocation according to our proposed Algo-
rithm 1 for a fair comparison. To the best of our knowledge,
there is no other algorithm for comparison that solves joint
association and positioning and targets maximization of the
UEs’ satisfaction. As exploiting the k-means requires that we

SBS1

FlyBS1

FlyBS2

SBS2

SBS4 SBS3

FlyBS3

1600 m

16
00

 m

FIGURE 3: Simulation area with FlyBSs and SBSs and
associated UEs (association to individual FlyBSs is indicated
by colors).

know the number of FlyBSs to be deployed, we investigate
the k-means with the same number of FlyBSs as the number
of FlyBSs required by our proposed algorithm based on the
PSO. This allows a fair comparison of the k-means and the
PSO in terms of the UE’s satisfaction, which is our major
objective.

In Figure 4, we show the ratio of the satisfied UEs to the
achieved throughput (i.e., the UEs for which cn,k ≥ cminn )
for cminn set to the same value for all the UEs and ranging
between 1 and 20 Mbit/s. For all compared algorithms, the
ratio of satisfied UEs is decreasing with increase of both
cminn and the number of UEs. The decrease in satisfaction is

TABLE 1: Simulation parameters.

Parameter Value
Simulation area 1600m x 1600m
Carrier frequency 2 GHz
Number of SBSs/Maximal number of FlyBSs 4/20
Tx power of SBS/FlyBS 15/15 dBm
Bandwidth of SBS/FlyBS 20/20 MHz
SBS/FlyBS/UE height 20/20/1.5 m
Maximal number of iterations GA/PSO/k-means 100/100/100
Population size GA/Number of particles PSO 100/100
GA - pc/pmutate/pmutate,high 0.8/0.3/0.8
PSO - φ/φ1/φ2/cg /cp 4.1/2.05/2.05/1.5/1.5
Number of simulation drops 1000 drops
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FIGURE 4: Ratio of the UEs satisfied with experienced
throughput.
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FIGURE 5: Total throughput of all UEs in the network.

because, while the UEs require higher data rates (i.e., higher
cminn ), the BSs still have a limited amount of bandwidth
that can be allocated to the UEs. The gain of the proposed
algorithms based on GA and PSO compared to the k-means
and 100 UEs is up to 30 % and 31%, respectively. Although
the gain decreases with more users in the area, the gain of
the proposed algorithms is above 6% for almost all values
of cminn , even for 1000 UEs. The improvement in the UEs’
satisfaction is achieved by the positioning of the FlyBSs,
association of the UEs, and turning off the BSs that are not
necessary. All these aspects lead to a higher level of the
received signal and/or lower interference from neighboring
BSs.

Figure 5 depicts a total throughput, which is defined as the
sum of data rates cn,k over all UEs. It is demonstrated that
the total throughput is increased by the proposed algorithms
(GA and PSO) when compared to the k-means. The gain
typically ranges between 19% and 47%. Again, the highest
gain is achieved for a lower number of UEs. For example, for
100 UEs, both proposed algorithms lead to an improvement
in the total throughput by approximately 30% for cminn =
1 Mbit/s with respect to the k-means. The highest gain is
observed for cminn = 2 Mbit/s and 100 UEs; in this case, the
proposed algorithms based on GA and PSO outperform the k-
means by 128% and 126%, respectively. This notable gain is
because the k-means fails to handle small groups of the UEs
requiring relatively high data rates. In contrast, both GA- and
PSO-based algorithms converge to a suitable deployment and
association that avoids redundant interference.

Figure 5 also shows an interesting phenomenon, as the
total throughput for 500 UEs is higher than that for 1000
UEs if cminn = 1 Mbit/s. This is due to the definition of the
cost function in (7), and the fact that the primary objective
is to maximize the UEs’ satisfaction while the throughput
maximization is only a secondary objective (see (7)). Con-
sequently, if all UEs’ requirements are satisfied with the
experienced throughput (i.e., the case with 500 UEs and cminn

= 1 Mbit/s, as shown in Figure 4), both the GA and the PSO
start maximizing the total throughput as well. In contrast, if
some of the UEs remain unsatisfied (i.e., the case with 1000
UEs deployed in the area and cminn = 1 Mbit/s), the GA and
the PSO aim to maximize the UEs’ satisfaction while the

1 5 10 15 20
0
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10
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20

FIGURE 6: Number of deployed flying base stations in order
to reach the UEs’ satisfaction presented in Figure 4.

throughput maximization does not take place. Consequently,
the total throughput for 1000 UEs is slightly lower than the
total throughput achieved for 500 UEs if cminn = 1 Mbit/s.

The same behavior can be seen also for 100 UEs, where the
throughput gradually increases as long as cminn ≤ 5 Mbit/s
since all 100 UEs are always satisfied (i.e., the proposed
algorithms are able to further maximize the throughput
according to the secondary objective). However, for cminn

higher than 5 Mbit/s, the total throughput starts decreasing
(see the throughput for cminn between 5 and 7 Mbit/s). For
these values of cminn , the case when all UEs are satisfied (i.e.,
when throughput maximization takes place) occurs for some
simulation drops while, in other drops, not all UEs are satis-
fied (i.e., the secondary objective of throughput maximization
does not take place). The cases when all UEs are satisfied and
when some UEs are not satisfied are represented by different
slopes of the total throughput over cminn . Combination of both
cases for cminn between 5 and 7 Mbit/s results in a decrease
in the total throughput. Nonetheless, with a further increase
in cminn above 7 Mbit/s, the total throughput starts increasing
again, following the slope corresponding to the second case
(some UEs are not satisfied), with a slower increase in the
total throughput comparing to cminn ≤ 5 Mbit/s. The slope
of the second case (cminn > 7 Mbit/s) is lower because the
secondary objective takes place in no (or almost no) drops.
Note that the first non-satisfied UEs are those with the worst
channel quality. Thus, the total throughput still increases even
if the secondary objective is not considered. This is due to
the allocation of bandwidth to the UEs with a higher channel
quality.

The number of active FlyBSs required to maximize the
UEs’ satisfaction is presented in Figure 6. The number of
FlyBSs for the k-means is not shown, as the k-means cannot
change the number of active FlyBSs, and we set it to the
number of active FlyBSs required by the PSO, as explained
earlier. From Figure 6, we can see that the number of active
FlyBSs with required throughput increases for low cminn , but
for cminn above 5 Mbit/s, the number of active FlyBSs starts
slowly decreasing for 500 and 1000 UEs. The decrease in the
number of active FlyBSs for a larger cminn is due to the fact
that the additional FlyBSs increase interference more than
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FIGURE 7: Evolution of cost over iterations of the GA and
PSO for cminn = 10 Mbit/s.

the amount the UEs can gain from the improved level of the
useful signal provided by the serving BS.

The proposed algorithms based on GA and PSO find the
solution iteratively. An evolution of the cost functionQl with
iterations for cminn = 10 Mbit/s is shown in Figure 7. The fig-
ure depicts the number of UEs satisfied with their data rates in
each iteration (following (7)). The value of the cost function
(i.e., the number of satisfied UEs) iteratively improves as the
algorithms based on both the GA and the PSO find better
positions of the FlyBSs. It is shown that the positioning based
on the GA provides slightly higher values of the cost function
in comparison to the PSO (difference is on the order of a few
percent. However, the cost function converges almost to its
maximum in roughly 30 or 40 iterations for both algorithms.
Then, the cost function remains almost constant. Such a low
number of iterations required for the convergence makes the
proposed solutions promising for real networks.

The performance analysis presented in the previous figures
shows that the GA slightly improves the UEs’ satisfaction
with respect to the PSO (by up to 2%, see Figure 4). At the
same time, the GA increases the total throughput by 1%~10%
compared to the PSO (see Figure 5). In addition, the GA
converges to these gains while requiring approximately one
FlyBS less than the PSO (see Figure 6), so the operational
cost is slightly reduced by the GA as well. However, this gain
is at the cost of a higher time complexity of the algorithm
based on the GA. The GA is of a higher time complexity
than the PSO because of the nature of the base GA and
PSO algorithms (see, for example, [36]). We express the time
complexity as the time required to complete one iteration of
the algorithm (i.e., one update of the FlyBSs’ positions for
each population/particle). The iteration takes 0.22 and 0.13
seconds, on average, for the GA and the PSO, respectively.
Note that the times of each iteration are obtained at a desktop
PC with Intel i7-7700K@4.2 GHz CPU and 32 GBs of RAM.

V. CONCLUSION
In this paper, we have proposed an algorithm for the joint
positioning of the FlyBSs and association of the UEs to
maximize the number of UEs satisfied with the experienced
data rates. The developed algorithm is presented in two

variants: one based on the GA and one on the PSO. We show
that both approaches improve the UEs’ satisfaction compared
to the commonly used k-means by up to roughly 30%. Also,
a gain in the total throughput of all UEs is observed for both
proposed algorithms. The gain typically varies between 19%
to 47%, but reaches its maximum of more than 100% for
scenarios with a lower number of UEs and medium to high
data rates. We also show that the GA slightly increases the
UEs’ satisfaction and the total throughput while reducing
the number of required FlyBSs compared to the PSO. This
improvement is, however, at the cost of a higher time com-
plexity.

Future research should be focused on development of
solutions that allow application of the proposed evolutionary-
based algorithms as well as those that allow high mobility and
efficient mitigation of interference among all BSs [14].
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