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Abstract—Unmanned aerial vehicles acting as flying base sta-
tions (FlyBSs) have been considered as an efficient tool to enhance
capacity of mobile networks and to facilitate communication in
emergency cases. The enhancement provided by such network
necessitates a dynamic positioning of the FlyBSs with respect
to the users. Despite that, the power consumption of the FlyBS
remains an important issue to be addressed due to limitations
on the capacity of FlyBS’s batteries. In this paper, we propose a
novel solution combining a transmission power control and the
positioning of the FlyBS in order to ensure quality of service to
the users while minimizing total consumed power of the FlyBS.
We derive a closed-form solution for joint transmission and
propulsion power optimization in a single future step. Moreover,
we also provide a numerical method to solve the joint propulsion
and transmission power optimization problem when a realistic
(i.e. inaccurate) prediction of the users’ movement is available.
According to the simulations, the proposed scheme brings up to
26% of total FlyBS’s power saving compared to existing solutions.

Index Terms—Flying base station, transmission power, propul-
sion power, prediction, mobile users, mobile networks, 6G

I. INTRODUCTION

Deployment of Flying Base Stations (FlyBSs) is a promising
technique to address multiple concerns in wireless networks.
In contrast to the conventional static base stations, the FlyBSs
feature exclusive advantages due their high-mobility, which
enables to adapt the network topology to an environment
and actual user requirements on communication. This makes
FlyBSs a suitable solution for various applications including
surveillance in an area [1], offloading traffic from static
base stations (BSs) [2], emergency operations [3], extending
coverage [4]-[7], collection of data from IoT devices [8],[9],
or improving quality of service for users [10]-[12]. In [13],
several key challenges regarding the FlyBS’s services to the
users are listed. These challenges include, among others,
positioning of the FlyBSs to provide coverage for as many
users as possible, controlling the FlyBSs’ power consumption
to enhance their serving duration, or maximizing the quality
of service (e.g., throughput). The problem of maximizing the
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coverage for networks with single FlyBS is studied in [4]
and [6]. The authors in [7] investigate optimization of the
number of required FlyBSs to guarantee the service quality
to all ground users in a given area. The authors in [14] adopt
evolutionary-based algorithms to maximize the users’ satis-
faction in terms of experienced data rates. In [10], the authors
study the problem of the uplink throughput maximization in
a scenario with multiple-antenna FlyBS. However, in all these
papers, the power consumption is not addressed at all.

The problem of power consumption in a network with a
fixed-wing FlyBS along with the ground users is investigated
in [15]. The objective is to identify the trajectory of the FlyBS
along several ground users and collect/deliver information
from/to these users while minimizing the total power spent
by the FlyBSs for flying and communication. Then, in [16],
the same problem for rotary-wing FlyBS is studied. In [17], a
reinforcement-learning (RL) framework is proposed to control
the power consumption in the mobile networks with multiple
FlyBSs. However, in [15], [16], and [17], the impact of
transmission power is ignored and only the propulsion power
spent for the movement of the FlyBS is considered. The
efficient 3D placement of the FlyBSs with the consideration of
transmission power minimization is studied in several works
with a variety of goals including maximization of the number
of covered users [18], maximization of the downlink coverage
[5], maximization of network throughput [19], maximization
of the users’ quality-of-experience (QoE) [20], etc. These
works are focused on reducing the FlyBSs’ transmission
power, but the power consumption due to the movement of
the FlyBS is not considered. The energy consumption caused
by the FlyBS’s movement as well as by transmission of data is
considered in [21]. However, the work is focused on a scenario
in which the FlyBS tracks a mobile target. In such scenario,
the constraint on quality of communication towards the users
is ignored.

In our previous work [22], the combination of both the
FlyBS’s transmission power and propulsion power is consid-
ered for a single-point optimization. The single-point optimiza-
tion is understood as adjustment of the FlyBS position and
transmission power between each two time steps of the FlyBS



Fig. 1. System model with multiple mobile users deployed within coverage
area of the FlyBS.

operation disregarding potential (even inaccurate) estimation
of future movement of the users that could further reduce the
total power consumption. Moreover, the model proposed in
[22] assumes the propulsion power as a linear function of the
FlyBS’s velocity, which might not be realistic for rotary-wing
FlyBSs as shown in [16].

In this paper, we analytically express the total power con-
sumption as a function of the users’ relative location with
respect to the FlyBS and users requirements on the downlink
capacity. Then a closed-form solution is provided for the
case of single-point optimization, where, similar to [22], the
total power is minimized between two consecutive time steps,
although here we adopt a realistic non-linear model for the
propulsion power consumption of the rotary-wing FlyBSs,
which makes the solution significantly more complicated.
Furthermore, a numerical solution is proposed to reduce the
total power consumption over multiple time steps (multi-
point optimization), as the idea of single-point optimization
does not show a good performance in scenarios where the
movement velocity of the ground users is very high. We show
the performance of the proposed solution and compare it to
the existing approaches. Our proposed method shows up to
26% improvement in the total power consumption compared
with state-of-the-art methods.

The rest of the paper is organized as follow. In section
II, we present the system model. The problem of the power
optimization via determination of the FlyBS position and
transmission power is presented in Section III. In section
IV, we provide simulation results and compare performance
with existing solutions. Last section concludes the paper and
outlines potential directions to the future research.

II. SYSTEM MODEL AND FORMULATIONS

We consider a mobile network cell with a rotary-wing FlyBS
that serves n mobile users in an area as shown in Fig. 1. All
n users in the area communicate directly with the FlyBS.

Let {X(t), Y (t),H(t)} denote the location of the FlyBS
at the time t. By adopting the model from [15], we assume
that the FlyBS operates at a fixed altitude H . Hence, the
FlyBS can either hover or flight horizontally over the area.

Let {xi(t), yi(t)} denote the coordinates of the i-th ground
user at the time t. Then, di(t) denotes Euclidian distance of
the i-th user to the FlyBS at time t.

We adopt orthogonal downlink channel allocation for all
users as considered in a conventional mobile network. Thus,
we assume no interference among channels of different users.
With that, the channel capacity of the i-th user is calculated
from the Shannon–Hartley theorem as:

Ci(t) = Bilog2(1 +
pRi (t)

Ni
), (1)

where Bi denotes the bandwidth of the i-th user’s channel, Ni

denotes the noise power at the channel of the i-th user, and
pRi (t) is the received power by the i-th user at time t.

According to the Friis transmission equation, the transmis-
sion power of the FlyBS to the i-th user (pTi ) is given as:

pTi = Qid
2
i , (2)

Qi =
pRi (4πfc)

2

GT
i G

R
i c

2
,

where GT
i is the gain of the FlyBS’s antenna, GR

i is the gain
of the user’s antenna, fc is the communication frequency, and
c = 3× 108m/s is the speed of light. Note that the coefficient
pR
i (4πfc)

2

GT
i GR

i c2
is denoted by Qi for the ease of presentation in later

discussions. Note that we assume the antennas of all users
with the same gain. From (2), we can conclude that the power
consumed by the FlyBS due to transmission power PTX is
expressed as a function of the coordinates of the users and the
FlyBS as follow:

PTX(X,Y,H, tk) =

n∑
i=1

Qid
2
i = (3)

n∑
i=1

Qi((X(k)− xi(k))
2 + (Y (k)− yi(k))

2 +H2).

Following (3), the average transmission power (denoted as
P avg
TX ) over the time span of {t1, . . . , tT } can be written as:

P avg
TX (t1, . . . , tT ) =

1

T

T∑
k=1

n∑
i=1

Qid
2
i =

1

T

T∑
k=1

n∑
i=1

Qi((X(k)− xi(k))
2 + (Y (k)− yi(k))

2 +H2). (4)

As in many related works, we assume that the current
positions of the users are known to the FlyBS (see, e.g. [4],
[23], [24]). Also, the FlyBS can determine its own position as
the knowledge of the FlyBS’s position is needed for a common
flying and navigation of the FlyBSs ([25]).

In order to formulate the power spent for the FlyBS’s
movement (propulsion power), we refer to the model provided
in [16] for rotary-wing FlyBSs. In particular, the propulsion
power is written as a function of the FlyBS’s average velocity
(denoted by V ) in the following way:

Ppr(V ) = L0(1 +
3V 2

U2
tip

) + Li(

√
1 +

V 4

4v40,h
−

V 2

2v20,h
)
1
2 +

1

2
d0ρsrAV 3.

(5)



where L0 and Li are the blade profile and induced powers
in hovering status, respectively, Utip denotes the tip speed of
the rotor blade, v0,h denotes the mean rotor induced velocity
during hovering, d0 is the fuselage drag ratio, sr is the rotor
solidity, ρ is the air density, and A is the rotor disc area, see
[16] for more details about the model.

Note that the FlyBS’s average velocity can be calculated
by dividing the distance moved between two points with the
duration of the movement. In particular, if the FlyBS moves
from {X(k), Y (k),H} to the new location {X(k+1), Y (k+
1),H}, the average velocity is rewritten as:

V (k, k + 1) =
1

∆tk

√
((X(k + 1)−X(k))2 + (Y (k + 1)− Y (k))2),

(6)

where ∆tk = tk+1 − tk.
Let us define the initial position of the FlyBS as

(X(0), Y (0),H), the average propulsion power over the time
period of {t0, . . . , tT } is written as:

P avg
pr =

1

T

T−1∑
k=0

Ppr(V (k, k + 1)). (7)

In order to formulate the total power consumption, we
jointly optimize both the communication power and the
propulsion power. We consider also the power consumption of
on-board circuits at the FlyBS (denoted by Pcircuit). Hence,
the average overall power consumption P avg

tot is written as:

Pavg
tot (X,Y,H, t1, . . . , tT ) = Pavg

circuit + Pavg
TX + Pavg

pr (8)

According (3), (4), and (7)), we rewrite P avg
tot as:

Pavg
tot = Pavg

circuit+

1

T

T∑
k=1

n∑
i=1

Qi((X(k)− xi(k))
2 + (Y (k)− yi(k))

2 +H2)+

1

T

T−1∑
k=0

Ppr(V (k, k + 1)). (9)

Equation (9) can be further expanded by using (5) and (6),
but we do not show the expanded form to avoid cluttering.
Note that Pcircuit in (8) depends on the FlyBS’s computa-
tional (processing) and communication chipsets and it can be
regarded as a constant [16].

In [26], it is shown that, in order to achieve the optimal
network’s capacity while neglecting the propulsion power
of FlyBS, the optimal coordinates Xopt(k) and Yopt(k) of
the FlyBS correspond to the center of gravity of the users’
positions:

Xopt(k) =

∑n
i=1 Qixi(k)∑n

i=1 Qi
,

Yopt(k) =

∑n
i=1 Qiyi(k)∑n

i=1 Qi
.

(10)

With a similar logic, in case that the users’ capacities are not
degraded, (8) indicates the position of the FlyBS that achieves
the minimum transmission power. Note that the received power
by the users is already incorporated in Qi (1 ≤ i ≤ n)
according to (2), and so in case the users have different
throughputs, the coefficients Qi are not necessarily equal for
different users.

III. POWER OPTIMIZATION AND FLYBS POSITIONING

In this section, we first define the optimization problem.
Then, we derive a closed-form solution to the defined problem
for case T = 1, which is the single-point optimization as
in [22], however, with non-linear power consumption model
based on [16], which completely changes the solution. Next,
we provide a numerical solution for the multi-point optimiza-
tion problem (T > 1), as deriving a closed-form solution for
this case is too difficult if not impossible.

A. Problem formulation

We formulate the problem of the total power consumption
minimization over the time period T as follow:

argmin
X(k),Y (k),H(k)

P avg
tot , (1 ≤ k ≤ T ) (11)

s.t. Cj(t) ≥ Cj
min, j ∈ {1, ..., n}, ∀t.

The constraint in (11) guarantees that every user within
the coverage area receives the minimum required capacity
(denoted by Cmin

j , j ∈ 1, . . . , n) at all time. In our case, we
define Cmin

j as the capacity that would be experienced by
the j-th user over the duration of {t1, . . . , tT } if a static BS
was deployed. We remark that the transmission power (and so
the total power consumption) is increasing with the received
capacity according to (1) and (2). Thus, the minimum total
power consumption in (11) occurs when every user receives
exactly the minimum required capacity, hence, the constraint
can be rewritten as Cj(t) = Cmin

j (∀j ∈ {1, . . . , n},∀t). From
(1), it is concluded that for a constant capacity, the received
power is also constant, which implies that the coefficients Qi

are constants. Hence, the transmission power for each user
changes only when there is a relative displacement between
the FlyBS and the users (e.g., due to users’ movement). Here
we note that the optimization problem in (11) is repeated every
T time steps to calculate the optimum locations of the FlyBS
over time.

B. Closed-form solution for single-point optimization

In this subsection, we derive closed-form solution to the
optimization problem when T = 1. First, we find the critical
points at which the partial derivatives of P avg

tot are equal to
zero. However, due to the complicated expression of Ppr(V )
in (5), calculation of the exact closed-form solution is not
feasible. More specifically, we find that solving ∂Pavg

tot

∂X = 0

and ∂Pavg
tot

∂Y = 0 together leads to calculating the roots of
polynomials of degree fourteen, which cannot be provided
with algebraic solution. Instead, we find an approximation of
Ppr(V ) using polynomial fitting and then solve ∂Pavg

tot

∂X = 0 and
∂Pavg

tot

∂Y = 0 by referring to the approximated expression. More
specifically, it is observed that the propulsion power in (5)
can be well approximated by a polynomial of degree five with
respect to V . Fig. 2 shows the actual and the approximated
curves for the FlyBS with physical specifications of the FlyBS
provided in [27] for ” DJI Spreading Wings S900” (see Table I
in [27]). Since the error is negligible, we use the approximated
propulsion power (denoted by P apx

pr (V )) that is expressed as:
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Fig. 2. Actual propulsion power and polynomial approximation vs. velocity
of rotary-wing FlyBS.

P apx
pr (V ) =

5∑
j=0

cjV
j , (12)

c0 = 500.2700, c1 = 1.6360, c2 = −1.4103, c3 = 0.0479,

c4 = 2.3521× 10−4, c5 = −1.3452× 10−5.

The coefficients in (12) are calculated using MATLAB to fit
the polynomial to the actual curve with the minimized mean-
square-error (MSE).

Now by using P apx
pr in (12) and rewriting the equations

∂Pavg
tot

∂X = 0 and ∂Pavg
tot

∂Y = 0 for the period of {t0, t1} we get:
n∑

i=1

2Qi(X(1)− xi(1)) =

−(
X(1)−X(0)√

(X(1)−X(0))2 + (Y (1)− Y (0))2)
.
dPapx

pr

dV
|V =V (0,1)

n∑
i=1

2Qi(Y (1)− yi(1)) =

−(
Y (1)− Y (0)√

(X(1)−X(0))2 + (Y (1)− Y (0))2)
.
dPapx

pr

dV
|V =V (0,1) (13)

From (13) we derive a new equation as follows∑n
i=1 2Qi(X(1)− xi(1))∑n
i=1 2Qi(Y (1)− yi(1))

=
X(1)−X(0)

Y (1)− Y (0)
. (14)

Equation (14) can be further rewritten as

(
∑n

i=1 2Qi)X(1)− (
∑n

i=1 2Qixi(1))

(
∑n

i=1 2Qi)Y (1)− (
∑n

i=1 2Qiyi(1))
=

X(1)−X(0)

Y (1)− Y (0)
. (15)

From (15), it is concluded that (intermediate steps leading
to (16) are not presented here):

(Y (1)− Y (0)) =

(
∑n

i=1 2Qi)Y (0)− (
∑n

i=1 2Qiyi(1))

(
∑n

i=1 2Qi)X(0)− (
∑n

i=1 2Qixi(1))
(X(1)−X(0)). (16)

With (16), we can simplify the expression for V in (6) to

V = M |X(1)−X(0)|,

M =
1

∆tk
(1 +

(
∑n

i=1 2Qi)Y (0)− (
∑n

i=1 2Qiyi(1))

(
∑n

i=1 2Qi)X(0)− (
∑n

i=1 2Qixi(1))
)
1
2 . (17)

Now by expanding the first equation in (13) using (12) and
(17) we get:

(

n∑
i=1

2Qi)X(1)− (

n∑
i=1

2Qixi(1)) = (18)

−(
X(1)−X(0)

M |X(1)−X(0)|
)(5c5V

4 + 4c4V
3 + 3c3V

2 + 2c2V + c1) =

−(
X(1)−X(0)

M |X(1)−X(0)|
)(5c5M

4|X(1)−X(0)|4+

4c4M
3|X(1)−X(0)|3 + 3c3M

2|X(1)−X(0)|2+
2c2M |X(1)−X(0)|+ c1).

Equation (18) can be solved by considering two different
possibilities: a) X(1) > X0 (equivalently, |X(1) − X(0)| =
(X(1) − X(0)) or b) X(1) < X0 (equivalently, |X(1) −
X(0)| = −(X(1) − X(0)). Presuming a) or b), (18) is
rewritten as a quartic function with respect to X(1) that can
be provided with a closed-form solution as elaborated below.
For X(1) > X(0), (18) is rewritten as:

a4X
4(1) + a3X

3(1) + a2X
2(1) + a1X(1) + a0 = 0,

a4 = 5c5M
3, a3 = −20c5M

3X(0) + 4c4M
2,

a2 = 30c5M
3X2(0)− 12c4M

2X(0) + 3c3M,

a1 =
n∑

i=1

2Qi − 20c5M
3X3(0) + 12c4M

2X2(0)− 6c3MX(0) + 2c2,

a0 = 5c5M
3X4(0)− 4c4M

2X3(0) + 3c3MX2(0)− 2c2X(0)+

c1

M
− (

n∑
i=1

2Qixi(1)). (19)

There are four solutions to (19) that are given by:

−a3

4a4
− S ±

1

2

√
−4S2 − 2p+

q

S
,

−a3

4a4
+ S ±

1

2

√
−4S2 − 2p−

q

S
, (20)

where

p =
8a4a2 − 3a23

8a24
, q =

a33 − 4a4a3a2 + 8a24a1

8a34
,

S =
1

2

√
−2

3
p+

1

3a4
(G+

∆0

G
), G =

3

√√√√∆1 +
√

∆2
1 − 4∆3

0

2
,

∆0 = a22 − 3a3a1 + 12a4a0,

∆1 = 2a32 − 9a3a2a1 + 27a23a0 + 27a4a
2
1 − 72a4a2a0. (21)

For X(1) < X0, (18) is rewritten as:

b4X
4(1) + b3X

3(1) + b2X
2(1) + b1X(1) + b0 = 0,

b4 = 5c5M
3, b3 = −20c5M

3X(0)− 4c4M
2,

b2 = 30c5M
3X2(0)− 12c4M

2X(0) + 3c3M,

b1 = −
n∑

i=1

2Qi − 20c5M
3X3(0)− 12c4M

2X2(0)− 6c3MX(0)− 2c2,

b0 = 5c5M
3X4(0) + 4c4M

2X3(0)+

3c3MX2(0) + 2c2X(0) +
c1

M
+ (

n∑
i=1

2Qixi(1)). (22)

Similar to (19), there are four solutions to (22) that can
be derived by using the coefficients b4, ..., b0 instead of
a4, ..., a0, respectively. Of course, only the real roots of the
quartic functions in (19) and (22) are considered. Furthermore,
the solutions to (19) and (22) must meet their presumptive
conditions X(1) > X(0) and X(1) < X(0), respectively.



For each of the candidates for X(1), the corresponding value
of Y (1) is calculated from (18). In addition to the derived
solutions, we also note that (X(1), Y (1)) = (X(0), Y (0))
is another critical point of P avg

tot (of type 2). By collecting
all the (real-valued) critical points, the optimal location of
the FlyBS at t1 (i.e.,(X(1), Y (1),H) ) can be decided by
evaluating P avg

tot over {t0, t1} for all those candidate points
for X(1). Next, the optimization is performed over {t1, t2} to
find (X(2), Y (2),H), and so on.

C. Numerical solution for FlyBS power optimization (T > 1)

Note that solving the problem (11) requires determination
of 2T unknown variables in (10), namely X(k) and Y (k) for
1 ≤ k ≤ T , and so it is very difficult if not impossible to
derive a closed-form expression in general. Instead, we try
to optimize P avg

tot in (11) by providing a numerical solution.
There are several known methods that are commonly used
to perform function optimization, such as descent algorithms
(Newton’s method, Broyden’s method, etc.), evolutionary al-
gorithms (genetic algorithms, simulated annealing, etc.), and
pattern search methods (Simplex, multidirectional search, etc).
The descent algorithms are typically fast in convergence,
however, compared to other numerical solvers, they are more
likely to get stuck in local optima or even in minimax points.
In contrast, the pattern search methods are more reliable to
find the global optima of the objective function. Hence, in this
paper, we adopt pattern search methods to solve our defined
problem. More specifically, we exploit Downhill Simplex
Algorithm (also known as Nelder-Mead Algorithm [28]) to
find the minimum value of the objective function f (namely,
P avg
tot in our formulation). This method is based on direct

search in multidimensional space (with dimension m) and
function comparison using simplex, which is a polytope of
m+ 1 vertices in m dimensions. In our setup, each vertex is
an m-dimensional point with m = 2T which is corresponding
to the (X,Y ) sequence of the FlyBS over T time steps. The
simplex is updated during following steps:
1. We start from m+1 points P1, P2, . . . , Pm+1. Without loss
of generality, we rearrange their indices to satisfy the following
order (here we use the general notation of f as the objective
function for the sake of simplicity of presentation):

f(P1) ≤ f(P2) ≤ . . . ≤ f(Pm+1). (23)

2. Compute the centroid of all points except Pm+1, and let P0

denote it.
3. Compute the reflected point with reflection coefficient α as:

Pr = P0 + α(P0 − Pm+1). (24)

4. If f(P1) ≤ f(Pr) ≤ f(Pm), then the simplex is updated
by replacing Pm+1 with Pr, and then we go back to step 1.
5. If f(Pr) ≤ f(P1), the expanded point with expansion
coefficient β is calculated as:

Pe = P0 + β(Pr − P0). (25)

6. If f(Pe) ≤ f(Pr), then the simplex is updated by replacing
Pm+1 with Pe, and going to step 1. Otherwise, we replace

Pm+1 with Pr and then go to step 1.
7. Compute the contracted point with contraction coefficient
γ as:

Pc = P0 + γ(Pm+1 − P0). (26)

8. If f(Pc) ≤ f(Pm+1), then we replace Pm+1 with Pc and go
back to step 1. Otherwise, we compute the following shrunk
points with shrinkage coefficient δ:

Pi = P1 + δ(Pi − P1), 1 ≤ i ≤ m+ 1, (27)

and then go to step 1.
The termination in this method occurs when the standard

deviation of the function values at the simplex vertices falls
below a given threshold. It is notable that the performance of
Simplex method in terms of precision and termination time
relies significantly on the parameters specified in the algo-
rithm, such as the starting point (initial simplex), reflection,
expansion, contraction and shrinkage coefficients that should
be tuned according to the objective function. We derive the
appropriate values of such parameters via experiments. For
the initial simplex, we choose the values in the vicinity of
the optimal solution. To do this, we use the points derived
from the closed-form solution for single-point optimization as
elaborated in the previous subsection. We also remark that
during the calculation of the initial simplex from the closed
form solution, the predicted location of the users are adopted
as the reference. The details about the prediction of the users’
locations as well as the specifications of Simplex method are
elaborated in the next section.

IV. SIMULATION RESULTS

In this section, we provide details of simulations and models
adopted to evaluate the performance of the proposed power
control for minimizing the total power consumed by the
FlyBS. We also demonstrate the advantages of the proposed
scheme over the existing non-optimal scheme.

TABLE I
PARAMETER CONFIGURATIONS

System Parameter Numerical value
Number of users in the coverage area, n 180
Antenna gains, GT

i ,GR
i 0 dBi [33]

Noise power spectral density, Ni -174 dBm/Hz
Minimum capacity for the j-th user, Cmin

j 1 Mbps
Communication frequency, fc 2.6 GHz
System bandwidth 10 MHz [22]
Simulation step, ∆tj 1 second
Altitude of FlyBS, H 100 meters
Velocity of users, vi {2,5,10,12,15,20,25,30}m/s
On-board circuit consumption power, Pcircuit 22 dBm [22]
Simulation Duration 320 seconds
Number of simulation drops 100

A. Simulation scenario and models

The simulations are performed using MATLAB. We con-
sider a scenario where the FlyBS serves users represented by
vehicles and/or users in vehicles, for example, during a traffic
jam at a road or highway. In such situation, the conventional



network is usually overloaded as plenty of active users are
located at a small area with limited network coverage. FlyBS
can help to improve communication performance in such a
scenario ([26], [29]). More specifically, the users are assumed
to move on a 3-lane highway in the positive direction of y-
axis. A wide range of velocities of the vehicles is considered
({2, 5, 10, 12, 15, 20, 25, 30}m/s) to cover different traffic situ-
ations. As mentioned in section II, the current positions of the
users are assumed to be known to the FlyBS. However, the
location of the users at the future time slots are unknown in
general. There are many solutions for prediction of the user’s
movement, see, e.g., [30]-[32]. As each of the users-movement
predictions reaches different performance depending on sce-
nario and availability of additional information, the evaluation
of our proposal for any specific prediction would lead to
validity of the results only for such specific scenario and
conditions of the predictor. Thus, we generalize the evaluation
across the different predictive models for the position of each
user via modeling a general prediction error as follows.

The next position of the users is extrapolated from their last
two previous positions and this predicted position is further
influenced by an addition of a random error. More specifically,
we calculate the expected positions of the users by adding the
prediction error to the actual positions of the users as follow:

xi(s) = xi(0) + exi (s),

yi(s) = yi(0) + vyi,0(s)× s+ eyi (s), (28)

where exi (s) and eyi (s) denote the added error to the x and y
coordinates of the user i at the time s, respectively, and vyi,0(s)
denotes the velocity of the user i in the direction of y-axis at
the time s. In our scenario, we consider the following model
for exi (s) and eyi (s):

|exi (s)| ≤ WH ,

|eyi (s)| ≤
1

2
vyi (s)× s, (29)

where WH denotes the highway’s width.
Table I shows the values of the system parameters that we

adopt in the simulations provided later in this section. For the
wireless channel, we assume Free-Space Path Loss (FSPL)
model, and omnidirectional antennas with a gain of 0 dBi as
considered e.g., in [33]. We set spectral density of noise to
be -174 dBm/Hz. The radio frequency fc = 2.6 GHz and a
bandwidth of 10 MHz [22] are selected. Following [16], the
FlyBS’s flight altitude is set to H = 100 m. Each simulation
is of 320 s duration with a step of 1 s and the results are
averaged out over 100 simulation drops (simulation runs).

We investigate four different schemes: i) proposed multi-
point optimization scheme (MPS) with the location of FlyBS
determined by numerical optimization of P avg

tot as elaborated
in section III; ii) Single-point optimization scheme (SPS)
as in [22] where the locations of the FlyBS is determined
by minimizing P avg

tot for T = 1 , although here we adopt
the nonlinear model for propulsion power as in (5); iii)
Minimal TX scheme (MTX) as studied in [26], where only the
transmission power is minimized, and the propulsion power is
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Fig. 3. PTX for different optimization schemes and for vi = 5 m/s (top
figure) and 25 m/s (bottom figure).
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Fig. 4. Ppr for different optimization schemes and for vi = 5 m/s (top
figure) and 25 m/s (bottom figure).

ignored; iv) Stationary FlyBS scheme in which the FlyBS does
not move, and so there is no propulsion power consumption.

For the Simplex method we derived the coefficient values
for reflection (α), expansion (β), contraction (γ), and shrink-
age (δ) factors through experiments as:

α = 0.85, β = 1.75, γ = 0.4, δ = 0.45. (30)

The parameters’ values in (30) are selected with respect to the
accuracy and the termination time of the method.

B. Simulation results and discussion

First, we compare the average total power between multi-
point and single-point optimization schemes.

Figures 3, 4, and 5 illustrate the transmission, propulsion,
and total power consumption, respectively, over time for
different methods. The figures show the average results for
vi = 5 m/s and vi = 25 m/s. For MPS scheme, the duration
of optimization period is T = 80.

It is observed that at a low velocity of the users, there is no
significant change in transmission and propulsion power for
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Fig. 5. Ptot for different optimization schemes and for vi = 5 m/s (top
figure) and 25 m/s (bottom figure).

both MPS and SPS schemes. This is because the propulsion
power is a decreasing function at low velocities according to
Fig. 2, and this impels the FlyBS to reduce Ppr by moving
at higher speed than the users. Roughly speaking, at the early
steps of movement, this strategy seems to make the FlyBS
overtake the center of gravity of the users’ locations, which
causes an increase in the transmission power. In order to tackle
this issue, the FlyBS moves back to the center of gravity after
a few steps with almost the same velocity as before (to keep
Ppr low as well). This strategy is selected by both MPS and
SPS, and so there is no significant difference between the
performance of the two methods at low users’ velocities. It
is notable that for high users’ velocities, this strategy does not
work, as choosing to fly at a lower speed (to reduce Ppr) at the
beginning steps causes the FlyBS to fall behind the center of
gravity, and so it may require the FlyBS to speed up towards
the same direction, which introduces more propulsion power.
This explains the degradation in SPS scheme’s performance at
high users’ velocities.

According to Fig. 5, the MPS scheme provides a signif-
icantly more control over the total power consumption over
time, by increasing the FlyBS’s speed during some steps to
avoid significant increase in transmission power. Note that
For Stationary FlyBS scheme (scheme iv as indicated in the
previous subsection), the average transmission powers (and so
the average total powers) for vi = 5 m/s and 25 m/s are 700
Watts and 18000 Watts, respectively, which is very larger than
the average total power consumption in other schemes.

Next, we investigate an impact of the duration of the
optimization period on the average power consumption of the
FlyBS. Figures 6, 7, and 8 illustrate the average transmission,
propulsion, and total power consumptions, respectively, versus
the velocity of the vehicles. The results are shown for the
optimization periods of T = {20, 50, 80}. According to all
these figures, the power consumption decreases by performing
optimization over larger optimization period for all velocities.

According to Fig. 6, there is negligible difference between

Fig. 6. Pavg
TX vs. user’s velocity for different optimization schemes.

Fig. 7. Pavg
pr vs. user’s velocity for different optimization schemes.

Fig. 8. Pavg
tot vs. user’s velocity for different optimization schemes.

the transmission powers in MPS and SPS schemes for low
velocities of the users. As discussed earlier in this section, at
low speeds of the users, the FlyBS is basically able to reduce
both the transmission and propulsion powers by increasing
its speed, and staying close to the center of gravity of the
users’ locations at the same time. We also explained the
reason for significantly increasing behavior of transmission
and propulsion powers at high users’ speeds. It is observed that
the performance gap between MPS and SPS schemes in terms
of both propulsion and transmission power is also increasing
with respect to velocity, as higher speeds can be interpreted as
higher FlyBS’s displacements from the center of gravity of the



users, which makes the FlyBS increase either the transmission
power or the propulsion power (or both) depending on the
values of those powers.

As mentioned before, MTX scheme always ignores the
impact of propulsion power. Such strategy causes more propul-
sion power (and hence more total power) at both high and low
speeds where the propulsion cost is higher compared with
medium speeds where the propulsion cost is relatively low
(which is around the speed of 20 m/s according to Fig. 2). It
is also notable that MTX slightly outperforms MPS at very
high speeds, although the performance gap is negligible.

Figure 8 shows the advantage of MPS over both SPS
and MTX schemes at different speeds. More specifically, the
proposed MPS scheme can bring up to 26% improvement
in the total power savings compared with MTX in the low-
velocity regime, and up to 60% improvement in the total power
savings compared with SPS in high-velocity regime.

V. CONCLUSIONS

In this paper, we have studied the problem of power opti-
mization in future wireless networks with the FlyBSs. Contrary
to existing papers, we optimize the total power consumed by
the FlyBS including both the transmission power of the FlyBS
and the propulsion power spent for movement of the FlyBS.
We first provide closed-form solution determining the position
of transmitting power of FlyBS for a realistic non-linear power
consumption model in the case of single-point optimization.
Then, we develop a numerical solution for the optimal location
of the FlyBS and the transmission power of the FlyBS to
minimize the total power consumed by the FlyBS over any
arbitrary duration (multi-point optimization). We show that
the proposed joint transmission power control and FlyBS’s
movement allows a significant reduction in the total power
consumed by the FlyBS while the required capacity of the
moving users is always satisfied. In the future, the multiple
FlyBS scenario should be studied. In this scenario, association
of the users to individual FlyBSs should also be considered.
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