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Abstract— Device-to-device (D2D) communication, which ena-
bles a direct connection between users while bypassing the
cellular channels to base stations (BSs), is a promising way to
offload the traffic from conventional cellular networks. In D2D
communication, optimizing the resource allocation requires the
knowledge of D2D channel gains. However, such knowledge is
hard to obtain at reasonable signaling costs. In this paper,
we show this problem can be circumvented by tapping into
the information provided by the estimated cellular channels
between the users and surrounding BSs as these channels are
estimated anyway for a normal operation of the network. While
the cellular and D2D channel gains exhibit independent fast
fading behavior, we show that average gains of the cellular and
D2D channels share a non-explicit relation, which is rooted into
the network topology, terrain, and buildings setup. We propose
a deep learning approach to predict the D2D channel gains from
seemingly independent cellular channels. Our results show a
high degree of convergence between the true and predicted D2D
channel gains. Moreover, we demonstrate the robustness of the
proposed scheme against environment changes and inaccuracies
during the offline training. The predicted gains allow to reach
a near-optimal capacity in many radio resource management
algorithms.

Index Terms— Device-to-device, channel prediction, deep
neural networks, supervised machine learning.

I. INTRODUCTION

IN DEVICE-TO-DEVICE (D2D) communication, data is
transmitted over a direct link between a pair of nearby

user equipment (UEs) instead of being relayed via a base
station (BS) [1], [2]. Conventionally, the D2D pairs can exploit
two communication modes: shared and dedicated [3]. In the
shared mode, the D2D pairs reuse the same radio resources
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as cellular users (CUEs) that send data through the BS [4].
On the contrary, the D2D pairs in the dedicated mode are
allocated with resources that are orthogonal to the resources
of CUEs [5].

An efficient exploitation of the D2D network often
entails challenging radio resource management (RRM)
problems, such as, selection between shared and dedi-
cated modes [5]–[9], interference management to/from CUEs
[10]–[13], channels and power allocation [14]–[21], to name
a few. Conventional algorithms addressing the above RRM
problems in D2D networks assume a prior estimation of the
D2D channel gains (i.e., channel gains among all UEs involved
in D2D). In some cases, the full knowledge can be relaxed to
a partial knowledge, where only a subset of the distributed
D2D channel gains is required (e.g., in [19]). Nevertheless,
even the partial knowledge of the D2D channel gains implies a
substantial cost in terms of an additional signaling overhead on
top of the one generated in classical cellular communications.
In fact, the cellular channel gains (i.e., channel gains between
the UEs and the BSs) are typically estimated by default as
these are needed for handover as well as user attachment,
authorization, and classical cellular communication purposes.
More precisely, even the users that wish to engage in D2D
communications must be recognized by the network and
thereby their cellular channel gains must be estimated initially.
Thus, these cellular channels are periodically reported to the
BSs, and can be leveraged at no additional signaling overhead.
An interesting question then arises as to whether the by-default
cellular channel gains carry information that is relevant to D2D
communication and could help “for free” to solve the D2D
resource management problems.

The idea set forth in this paper is that, while the cellular
channel gains should exhibit fading coefficients that are known
to be independent of those measured on the direct channels
among the UEs, there actually exists common information
between these data at the statistical level. In order to build
up the reader’s intuition, consider the following toy exam-
ple. Imagine a green-field (free space) propagation scenario,
in which the location of all UEs is made available to the
network (even for those devices not interested in commu-
nicating with the network), then both the cellular and the
D2D channel gains would be easily predictable from the UEs’
locations and the use of a deterministic free-space channel
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model with line of sight (LOS) among all entities. Therefor,
in a LOS environment, both D2D and cellular channel gains
directly relate to each other via the user location knowledge.
In practice, however, the UEs’ locations may not be known due
to privacy issues or may not be simply available. More impor-
tantly, in non-line of sight (NLOS) scenarios (such as suburban
or urban areas), the D2D channels and the cellular channels
may be obstructed in completely independent manners making
the channel prediction from the UEs’ locations seemingly
impossible. For instance, two devices might experience a
strong LOS D2D channel while a building may block the
cellular channel between one of these devices (or more) and a
given BS, thus making the D2D and cellular channel gains
seemingly quite a bit less related than in the pure LOS
scenario.

In this paper, we show that, in contrast to initial belief,
a hidden and non-explicit relation between the cellular and
the D2D channels still exists in the NLOS case, and can
be made even stronger by leveraging cellular measurements
from additional surrounding BSs. The hidden relation is a
result of the dependency of the D2D and cellular channels
gains not only on the network topology, but also on the
relative locations of the users and the obstacles. Thus, this
relation is complex and its derivation is, by its nature, a typical
complex model extraction problem, where machine learning is
a suitable and efficient solution. Therefore, we exploit a deep
neural network (DNN) to extract the complex model for the
prediction of the D2D channel gains from the cellular channel
gains.

Another interesting by-product of our prediction scheme
lies in seeing that the set of cellular gains often constitute an
order-of-magnitude smaller dimensional object than the D2D
channels that we are trying to predict (i.e., there are just X
cellular gains for one cell with X users in it, in contrast to
X(X-1) direct and interference D2D gains). Hence, the pro-
posed approach not only offers to capitalize on easier-to-get
information (cellular channel estimation) rather than on the
harder-to-get D2D channel gains for the optimization of D2D
communications, but it also promises substantial savings in
signaling for the channel estimation.

In the literature, existing channel prediction works related
to this paper typically focus on predicting the channel quality
between a single UE and an antenna at the BS at a specific
frequency based on either: i) knowing the channel between
this UE and the BS antenna at another frequency [22]–[31],
or ii) knowing the channel between this BS antenna and
another UE that is close to the original UE [32], or iii) knowing
the channel between this UE and another close-by antenna
at the same BS [33]. However, the problem presented in
this paper, which is predicting D2D channel gains based on
the cellular channel gains, is of a different nature from the
above-mentioned prediction problems solved in the literature
because a strong commonality of space can’t be relied upon.
Note that this paper builds on and extends our previous
work presented in [34], where we introduced the idea of
the DNN-based prediction of the transmission powers for
D2D communication. Instead, in this paper, we generalize

the problem to predicting directly the D2D channel gains.
This allows for a more powerful framework, which yields
applications to various radio resource management (RRM)
related optimization problems in D2D networks.

The main contributions of this paper are summarized as
follows:

• We present a novel framework for the D2D channel
gains prediction based on the cellular channel gains in
order to solve various problems related to radio resource
management in D2D communication without incurring
the pilot overhead that is usually expected in D2D
communication.

• We design a DNN to build up a regression model con-
necting the cellular channel gains (as DNN inputs) to
the D2D channel gains (as DNN outputs). The DNN is
trained offline via simulations of the targeted area. Thus,
the training samples (cellular and D2D channel gains) are
collected based on the simulations and, then, used to train
the DNN. Our results show a high convergence between
the true and the predicted D2D channel gains, even in
typical urban NLOS scenarios.

• We demonstrate the efficiency of the proposed framework
by applying the predicted D2D gains to existing channel
allocation and power control algorithms presented [20]
and [21], respectively.

• We analyze the signaling overhead in terms of the number
of channel gains needed to implement the radio resource
management algorithms from [20] and [21] with and
without the proposed DNN-based D2D channel gains
prediction scheme to show the benefits of the proposed
concept.

• We demonstrate the robustness of the proposed scheme
against the environment changes and possible inaccura-
cies in the simulations of the targeted area during the
offline training.

The rest of the paper is organized as follows. In Section II,
we present the system model and formulate the problem of
D2D channel gains prediction. Then, Section III describes
the proposed DNN-based scheme for the prediction of D2D
channel gains. Performance evaluation and simulation results
are illustrated in Section IV. Finally, Section V concludes the
paper.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we present our system model, and then,
we formulate the problem of the D2D channel gains prediction.

A. System Model

In our model, we consider L base stations (BSs) deployed
randomly in a square area together with U UEs as shown
in Fig. 1. The UEs are divided into M CUEs and 2N D2D
user equipments (DUEs) composing N D2D pairs, hence, U =
2N +M . Each D2D pair consists of a transmitter, DUET, and
a receiver, DUER.
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Fig. 1. System model: An example with four DUEs, one CUE and three
BSs. Note that red and blue colors are used for D2D and cellular channels,
respectively, and only part of the signaling (channel estimation) is shown for
sake of clarity.

The capacity of the n-th D2D pair at the k-th communica-
tion channel is defined as:
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where, for the k-th channel, Bk is the channel bandwidth,
pk

n is the transmission power of the DUET of the n-th D2D
pair, pk

m is the transmission power of the m-th CUE, and
pk

q is the transmission power of the DUET of the q-th D2D
pair causing interference to the n-th D2D pair (i.e., q ∈
{1, . . . , N}/{n}). Further, gn,n represents the channel gain
between the DUET and the DUER of the n-th D2D pair, σo

is the noise density, gm,n is the interference channel gain
between the m-th CUE and the DUER of the n-th D2D pair,
and gq,n is the interference channel gain between the DUET

of the q-th D2D pair an the DUER of the n-th D2D pair. Note
that, without loss of generality, (1) assumes that the noise is
an Additive White Gaussian Noise similarly as in [35], [36]
and the interference is treated as Gaussian noise. In this paper,
the term “channel gain” refers to the magnitude of the channel
gain (as in, e.g., [16], [37]), as the magnitude is commonly
exploited for, e.g., channel allocation, power control, or to
determine the system capacity.

This paper assumes a complete absence of channel gains
knowledge among the UEs. Thus, the channel between DUET

and DUER of the same D2D pair, interference channels among
DUEs of different D2D pairs, and interference channels among
the CUEs and the DUEs (i.e., gn,n, gq,n, and gm,n in (1)) are
unknown.

The DUEs and the CUEs need to estimate uplink/downlink
channels to manage efficiently resource allocation and for
handover purposes. Thus, although the D2D channel gains are
not known by the network, still, the information on the channel
quality between each UE (CUE or DUE) and its neighboring
BSs are sent periodically to the serving BS in order to update
the network information [38]. The corresponding estimated
channel gain between any i-th (or j-th) UE and the l-th BS
is denoted as Gi,l (or Gj,l). These cellular channel gains
(Gi,l and Gj,l) are assumed to be represented by uplink

channel gains estimated (measured) by the BS using the
common way from the existing reference signals [39]. Nev-
ertheless, it is worth to mention that even downlink channel
gains can also be used to estimate quality of cellular channels
as the downlink gains can be estimated (measured) by the UEs
and fed back to the BS.

B. Problem Formulation

We aim to predict the real (true) channel gain gi,j between
any i-th and j-th UEs, that can be, then, exploited for
any existing RRM algorithms. Our goal is to minimize the
prediction error and we formulate the problem as:

min
g∗

i,j

(gi,j − g∗i,j)
2 (2)

where g∗i,j is the predicted channel gain between the i-th and
the j-th UEs. To predict the channel gain between any two
UEs, we exploit only the available information about each UE,
i.e., cellular channel gains. In the next section, we propose a
novel DNN-based scheme for the prediction of gi,j relying on
the knowledge of the cellular channel gains of the i-th and the
j-th UEs.

III. PREDICTION SCHEME

This section describes the proposed scheme for predicting
the D2D channel gains. First, we illustrate the principle of the
D2D channel gains prediction. Then, we describe the archi-
tecture of the proposed DNN and clarify the training process.
Moreover, we discuss the signaling overhead reduction reached
by the proposed prediction scheme and its implementation
aspects.

A. Principle of DNN-Based Prediction of D2D Channel
Gains Exploiting Cellular Channel Gains

In general, it is clear that in a green-field (free space)
propagation scenario, in which the location of all UEs is
made available to the network, both the cellular and the D2D
channel gains are easily predictable from the UEs’ locations.
In the free space area with LOS, the cellular channel from
the UE to at least three BSs corresponds to a single specific
location of the UE. Consequently, the D2D channel gain value
between two UEs can be easily predicted in such (unrealistic)
scenario. However, in practice, the UEs’ locations may not be
known due to privacy issues or may not be simply available.
Moreover, in NLOS (urban or suburban) scenarios, the D2D
channels and the cellular channels may be obstructed in com-
pletely independent manner and the D2D channel prediction
from the UEs’ locations seems to be impossible. For instance,
two devices might experience a strong LOS D2D channel
while a building(s) obstructs the cellular channel between one
of these devices (or more) and the given BS (see Fig. 2).
In such a case, the D2D channel gain between the two UEs
might be hard to predict based on the cellular channel gains.
However, in contrast to this initial belief, a strong relation
between the cellular and the D2D channels is still expected by
accounting for additional surrounding BS. The reason behind
this is that increasing the number of known cellular channel
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Fig. 2. Illustration of D2D channels prediction based on cellular channels for LOS (left part of figure) and NLOS (right part) scenarios.

gains from each UE leads to a higher confidence related to the
UE’s location and provides information about the position (and
shape) of obstructing elements of the terrain. This information
can then, in principle, be mapped into a cartography of D2D
gains.

To put the above-mentioned intuition into more rigorous
terms, given a specific area with certain topology, terrain and
buildings’ setup, there exists a mapping F connecting the
cellular channel gains of the existing UEs (denoted as GC)
and the D2D channel gains among these UEs (denoted as g)
so that:

g = F(GC) (3)

It is obvious that solving the problem (2) can be achieved
by approximating the function F from (3). Nevertheless, this
approximation is hard to be done taking into account the
changeable size of GC and g when the number of UEs
changes. In other words, a different function F needs to
be approximated for every possible number of UEs mak-
ing the solution unrealistic. Therefore, taking into account
the problem defined in (2), we circumvent this problem by
approximating the mapping F between GC

i,j and gi,j where
GC

i,j = {Gi,1, . . . Gi,L, Gj,1, . . .Gj,L} includes the gains of
the cellular channels from L BSs to any i-th and j-th UEs.
In such a way, regardless of the number of the existing UEs,
the D2D channel between any two UEs can be predicted by
knowing the gains of the cellular channels from these two UEs
and the surrounding BSs. hence, the problem (2) is written as:

min
F

(gi,j − F (GC
i,j))

2 (4)

The optimization problem (4) aims, by approximating F ,
to minimize the difference between the true (real) and the
predicted gains of the D2D channel between any i-th UE and
j-th UE; based on the knowledge of the cellular channel gains
of these two UEs.

Deep neural networks are typical up-to-date tools for func-
tions approximation and regression models creation. Thus,
in this paper, we exploit the DNN to predict gi,j based on GC

i,j.
Note that, for any UE (DUE or CUE), the cellular channel

gains between this particular UE and the surrounding BSs
are periodically reported to the BSs for purposes related to
the conventional communication and/or handover. In addition,
in the future mobile networks, the network computations are
supposed to be offloaded to powerful computation servers
reducing network’s energy consumption. Thus, even the pro-
posed DNN can be deployed on these computation servers.
The servers collect the estimated cellular channel gains (purple
dash-dotted lines in Fig.2) and perform the prediction of gi,j .
Note that the computation servers can be located at any unit
or entity in the network, such as a base station or in the
core network. For example, an edge computing server can
be exploited. With respect to the conventional architectures
of mobile networks (e.g., 4G), the edge computing brings
the computing power to the edge of the network where the
potential radio resource management algorithms can be run.
However, the specific deployment is up to the service provider
or the network operator and the prediction should be located
as close as possible to the place, where the radio resource
management is performed to avoid any additional delay in the
radio resource management.

B. The Architecture of the Proposed DNN

The problem of predicting the D2D channel gain between
the i-th and the j-th UEs based on the cellular channel gains
from both the i-th and j-th UEs to the L BSs is a regression
problem, which can be solved by the deep neural network
designed to build the regression model. Fig. 3 shows the
proposed fully-connected DNN for regression. The proposed
DNN is composed of an input layer (X0), H hidden layers
(X1, . . . , XH ) and an output layer (XH+1). The input layer
contains the cellular channel gains between the i-th UE and
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Fig. 3. The proposed DNN to build up a regression model connecting input
variables (cellular channel gains from two UEs (i and j) to L BSs) and a single
output variable (the D2D channel gain between the i-th and the j-th UE).

the L BSs and between the j-th UE and the L BSs (i.e., GC
i,j)

aligned as an input vector in the input layer as illustrated
in Fig. 3. Thus, the output of the input layer out0 is the cellu-
lar channel gains vector GC

i,j = {Gi,1, . . . Gi,L, Gj,1, . . . Gj,L}
of length 2 × L. Then, the DNN contains H hidden layers
whereas every hidden layer Xh is composed of Vh neurons.
Every hidden layer Xh has an input vector inh equivalent
to the output of the previous layer outh−1 (i.e., inh =
outh−1, ∀h ∈ {1, . . . , H}). Each input element z in inh is
fed to every neuron v in the hidden layer Xh with a weight
wh−1,h

z,v . Consequently, every neuron v performs dot product
between the input elements in inh and the corresponding
weights. The result of the dot product is added to a correspond-
ing bias bh−1,h

0,v and processed by the commonly used sigmoid
function giving the output of the neuron. Hence, the hidden
layer Xh with Vh neurons and input vector inh gives an output
vector outh of the length Vh and this output vector outh is,
thus, written as:

outh = Sig(Wh−1,hinh + bh−1,h)
= Sig(Wh−1,houth−1 + bh−1,h) (5)

where Sig is the sigmoid function Sig(Z) = 1
1+exp(−Z) ,

Wh−1,h is the matrix of weights of the links between every
input element of Xh (i.e., equivalent to the output of Xh−1)
and every neuron in Xh and bh−1,h is the vector of biases
attached to the neurons.

The output of the last hidden layer outH is followed by the
output layer. The output layer in the DNN for regression of a
single variable is composed of one neuron. The single neuron
of the output layer performs the dot product between outH
and the corresponding weights WH,H+1 (i.e., the vector of
weights dedicated to the links between the outputs of the last
hidden layer XH and the single neuron in the output layer
XH+1). Then, the output layer neuron also sums its attached
bias scalar bH,H+1 and implements a linear activation function
giving an output as:

g∗i,j = Lin(WH,H+1outH + bH,H+1) (6)

where Lin is the linear activation function Lin(Z) = Z and
the output g∗i,j of the proposed DNN is the predicted D2D
channel gain between the i-th and the j-th UEs.

C. Offline Learning and Exploitation of the Proposed DNN

We propose an offline supervised learning-based solution to
predict the D2D channel gain between any two UEs from their
cellular channel gains. Actually, the significant benefit of the
offline training is that the measurements for the training phase
are not needed. Instead, the offline training can be performed
by simulations before the channel prediction is adopted for
the real world. This offline training process starts with the
simulation of the targeted area (e.g., a cell). Within the area,
the positions of the UEs, e.g., i and j, are uniformly generated.
The cellular channels between the i-th UE and L BSs as
well as between the j-th UE and L BSs (GC

i,j) are calculated
together with the D2D channels between the i-th and j-th
UEs gi,j based on the statistical models of the channel gains.
The calculated cellular gains (presenting features) and the
D2D gain (presenting the target) compose together a single
learning sample. Then, the process is repeated by generating
the new positions of the UEs and calculating the channels
to constitute new samples. After the samples are collected,
the training process is done offline following the typical way
used to train any supervised learning-based neural network.
In detail, the learning samples are split into a training set and
a test set. The samples from the training set are used to train
the proposed DNN while the samples in the test set are used
to test the accuracy of the trained DNN on a set of samples
that is not used for training to prevent overfitting [41]. During
the training process, a loss function is defined to evaluate
the regression model prediction accuracy. The loss function
in the DNN that builds the regression model predicting a
single variable is, typically, a measurement showing how far
is the predicted value of the variable from the true value of
this variable (g∗i,j and gi,j in our case). Therefore, taking the
optimization problem (4) into account, we consider a mean
square error loss function that can be written as:

ι =
1
S

s=S∑
s=1

(gs
i,j − gs∗

i,j)
2 (7)

where S is the number of the training samples, gs
i,j is the target

(true D2D channel gain) of the s-th training sample, and gs∗
i,j is

the predicted D2D channel gain based on the cellular channel
gains of the s-th training sample.

To minimize the mean square error loss function,
the weights and biases of the proposed DNN are updated using
Levenberg-Marquardt Backpropagation algorithm, which is an
optimization method designed to solve non-linear least squares
problems [42]. Thus, Levenberg-Marquardt algorithm can be
applied with backpropagation for the neural networks training
when the loss function is a sum of squares [43].

The learning steps are done offline based on the samples
collected from the simulations of the area with randomly
deployed UEs, but without any connection to these specific
UEs. The training is focused on obtaining a “mapping” from
the cellular channel gains of any two UEs to the channel gain
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between these two UEs. Thus, the DNN can learn the general
relation between the cellular channels and the D2D channels
in the targeted area and the built model is not dedicated to any
specific UEs.

After the offline learning is done, the trained DNN is
uploaded to the unit where the radio resource management
takes place and this DNN is ready to be used in the real mobile
network to predict the D2D channel gains between any pair
of UEs in the real area. Thus, for multiple UEs, the trained
(and tested) DNN is utilized to predict all needed channel
gains among every pair of UEs independently and in parallel.
To be more specific, based on the cellular channel gains of the
UEs, we utilize the trained DNN to obtain all D2D channel
gains, such as the channel gains between every two DUEs of
the same D2D pair, interference channel gains between every
couple of DUEs from different D2D pairs and interference
channels between the CUEs and the DUEs. These can be,
then, exploited to solve any RRM problem using the existing
algorithms.

D. Analysis of Reduction in Signaling Overhead

In this subsection, we discuss the signaling overhead in
terms of the number of channel gains that need to be esti-
mated (measured) in the network.

In the existing network, the cellular channel gains between
the UEs and the neighboring BSs are commonly estimated
(i.e., for conventional communication and handover purposes).
The number of the commonly estimated cellular gains is
L(2N + M). Note that even the DUEs might need to change
from the D2D communication to the conventional communi-
cation in the case of a sudden D2D communication quality
drop and, therefore, the cellular channels of DUEs are also
periodically estimated and reported.

In the literature, for conventional RRM algorithms related
to the D2D communication (e.g., power control algorithm
from [21]), additional 2N(2N − 1) direct and interference
D2D channels need to be estimated between the 2N DUEs.
Moreover, for the D2D in shared mode, interference channels
between the CUEs and the DUEs have to be estimated and
reported as well. The number of those interference channels
between the M CUEs and the 2N DUES that should be
estimated is 2NM . Thus, the number of estimated channel
gains in the common network with the D2D communication
is:

Σ = L(2N + M) + 2N(2N − 1) + 2NM (8)

In this paper, we predict the D2D channel gains from
the common estimated cellular gains. In other words, in the
network with D2D communication utilizing the proposed
prediction scheme, the number of channel gains need to
be estimated (measured) is limited to the estimation of
L(2N + M) channel gains, which are used to predict the
remaining needed D2D channel gains. Thus, by subtracting
L(2N + M) from (8), we can calculate the reduction in the
number of estimated channel gains. This reduction, in the
shared mode, is equal to:

ΔΣ = Σ − L(2N + M) = 2N(2N − 1) + 2NM (9)

In the dedicated mode, the CUEs do not affect the D2D
communication as the channels allocated to the CUEs are
orthogonal to those allocated to the D2D pairs. In such
case, the reduction in the number of estimated channel gains
achieved by the proposed prediction scheme is determined by
setting M to zero in (8) and (9), respectively.

E. Implementation and Design Aspects

In this subsection, we discuss key implementation and
design aspects of the proposed DNN-based prediction of D2D
channels.

The first aspect is the number of samples to be collected
for the training. The proposed DNN is trained offline. Thus,
collecting even a high number of samples (if needed) is
feasible, as the samples can be collected by the simulation of
targeted area before using the trained DNN in the real world
as explained in Section III-C.

Another aspect related to the practical implementation of
the prediction scheme is the computational complexity of
DNN. In general, the computational complexity of the DNN
depends on the number of multiplications done by every
neuron in every layer between the inputs of this layer and
the corresponding weights. In detail, considering that: 1) the
DNN contains H hidden layers with XH neurons in each layer,
2) the number of DNN inputs is 2L (cellular gains between
two UEs and L BSs), and 3) the number of DNN outputs is
one (the D2D gain between two UEs), then, the number of the
multiplications performed for the D2D channel prediction is:

ρ = 2LX1 +
h=H−1∑

h=1

XhXh+1 + XH (10)

This computational complexity affects the latency with
which the channels are predicted in the network. Considering a
reasonable number of hidden layers and neurons per each layer
(i.e., our DNN includes five hidden layers with 20, 18, 15, 12
and 8 neurons); the number of the performed multiplications
(i.e., ρ = 1034 multiplications in our DNN when L = 3 BSs),
consumes a negligible computing time. Hence, we can claim
that the latency introduced by the DNN is negligible and the
overall delay is (at most) the same as the latency of any other
existing centralized approach, within which the D2D channel
gains need to be estimated via reference signals, and then
reported to the same unit where the DNN is running. Note
that with a high number of users, the high signaling in the
conventional centralized approaches leads to the need of a
high number of reference signals transmitted/received. The
high number of the reference signals requires to reserve a lot
of resources and can lead to an additional delay due to the
channel measurement scheduling. In our case, however, such
delay is avoided and the overall delay is reduced to simple
multiplications executed by the DNN.

The last practical question is how the proposed predic-
tion scheme copes with RRM algorithms in dynamic envi-
ronments or scenarios (e.g., moving users, users becoming
active/inactive, etc). In such scenarios, disregarding whether
our prediction scheme is exploited or not, the RRM algo-
rithm (e.g., channel allocation, power control, etc.) should
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Fig. 4. Example of simulation deployment with N = 4, M = 10 and L = 5 and several buildings (fixed obstacles) represented by the pink rectangles.
Note that the Rural area is of the same size as Urban1/Urban2 without any buildings or obstacles.

be performed periodically. Thus, also the proposed prediction
scheme is expected to be repeated periodically to update the
predicted D2D channel gains. The predicted D2D channels at
each time instant are just inserted as the inputs to the RRM
algorithms and every DUE is told to change its communi-
cation parameters (e.g., the channels the DUE is occupying,
the DUE’s transmission power at every channel, etc).

IV. PERFORMANCE EVALUATION

In this section, we describe the simulation scenarios and
parameters, and then, we discuss simulation results from
three different perspectives as follows. First, we analyze the
accuracy of the prediction scheme statistically showing how
close the predicted D2D channel gains are to the true gains
of the D2D channels. Second, we illustrate the performance
of the proposed prediction scheme on selected examples of
existing algorithms for D2D RRM in the mobile network,
and we show how this prediction scheme affects the D2D
communication quality and network’s signaling overhead. The
proposed prediction scheme aims to reduce the signaling
overhead needed for D2D communication without significant
losses in the communication quality. Last, we evaluate the
robustness of the proposed scheme against the environment
changes and the potential inaccuracies in the simulations
during the training phase.

A. Simulation Scenarios and Performance Metrics

We consider up to 20 DUEs (composing up to 10 D2D
pairs) and 10 CUEs deployed uniformly within an area of
250 × 250 m2 covered by up to 5 BSs. Although the DUEs
are uniformly distributed, the maximum distance between the
DUET and the DUER of the same D2D pair is upper-bounded
by a maximal distance of dmax = 50 m as in [44], [45]
to guarantee the availability of D2D communication. For any
D2D transmitter, the maximal and the minimal transmission
powers are set to pmax = 24 dBm and pmin = 1 dBm,
respectively, like in [34].

We consider three different scenarios according to the signal
propagation between the UEs and the BSs and among all UEs.
The first scenario assumes an open rural area denoted as
Rural with a full availability of line-of-sight (LOS) for all
channels (D2D channels and cellular channels). The other two
scenarios, illustrated in Fig. 4a and Fig. 4b, correspond to two
different urban areas (such as scenario C2 in [46]) with fixed
obstacles (FOs) representing e.g., buildings, and we denote
these two urban areas as Urban1 and Urban2. In Urban1 and
Urban2, the buildings lead to a certain probability of non-line-
of-sight (NLOS) for both the D2D and cellular channels. Note
that two different urban areas are simulated to validate our
prediction approach for different buildings topologies without
any changes in the DNN architecture.

In all areas, Rural, Urban1 and Urban2, the LOS path
loss is generated in line with 3GPP recommendations [47].
In the urban areas, we assume that the communication channel
intercepted by a single or more building walls is exposed
to an additional loss of 10 dB per wall as in [34]. Note
that Fig. 4 presents a 2D projection of the simulated urban
areas, nevertheless, in our simulations, the building heights
are distributed uniformly between 20 and 30 m to randomly
affect NLOS and LOS probabilities. Simulation parameters are
summarized in Table I.

For the learning process, we collect 1 000 000 samples.
Note that obtaining such a number of samples is feasible,
as the training process is done offline by the simulations. Still,
we also study the impact of the number of learning samples
on the prediction accuracy in the next subsection. The samples
are then divided into samples used for DNN training (70% of
samples are used as the training set) and 30% of samples are
for the testing (i.e., the test set).

The proposed DNN exploits five hidden layers composed
of 20, 18, 15, 12, and 8 neurons, respectively. The number
of hidden layers and the number of neurons in each layer
are set by trial and error approach. These specific numbers
of hidden layers and neurons are tested for the case when
the number of the DNN inputs is 2 − 10 (i.e., the cellular
channels between two UEs and 1−5 BSs); and for three areas
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TABLE I

SIMULATION PARAMETERS

(Rural, Urban1, and Urban2). Thus, as the number of DNN’s
outputs is always fixed to one (a single D2D channel gain is
being predicted), this number of hidden layers and neurons is
expected to be suitable for learning the relation between the
cellular gains and the D2D channel gains in different areas.

In this paper, we evaluate the proposed prediction scheme
from following perspectives:

i) Statistical evaluation of the prediction accuracy
before implementing the prediction scheme in
the mobile network. For the statistical evaluation,
we consider the well-known Pearson correlation
coefficient as a performance metric to show the accu-
racy of the predicted D2D channel gains with respect
to the true channel gains. The Pearson correlation
coefficient values range between zero and one where
the value of one represents a complete matching
between the predicted and the true values of the D2D
channel gains.

ii) Performance of the D2D communication with the
proposed prediction. The performance is represented
by the sum capacity of the D2D pairs: C =∑n=N

n=1

∑k=K
k=1 Ck

n and by the signaling overhead
corresponding to the number of channel gains to be
estimated/reported in the network.

iii) Robustness of the proposed scheme to identify the
impact of potential inaccuracies between the simula-
tions of the targeted area for training and the actual
real-world area and the resistance to the changes in
the real-world environment.
The three above-mentioned evaluation perspectives
are presented in the next subsections.

B. Statistical Analysis of the Prediction Scheme

In this subsection, we analyze the results related to gi,j

prediction statistically. In other words, as the training is done

Fig. 5. Pearson correlation coefficient between the true and the predicted
D2D channel gains versus number of BSs L.

offline before its usage in the mobile network, we aim to
study the prediction accuracy from the statistical point of
view showing how close we expect the predicted gain of a
D2D channel to be compared to the true gain of this channel.
We show the statistical results of predicting a single D2D
channel gain by testing the trained DNN on the test set.

Fig. 5 shows Pearson correlation coefficient between true
and predicted D2D channel gains over different number
of BSs. As expected, the Pearson correlation coefficient
increases with the number of BSs in all areas. In detail,
for the Rural area, a single BS is not enough to extract a
well-performing relation between the cellular and the D2D
gains (i.e., the Pearson correlation coefficient is around 0.64
for the Rural area when one BS is available). Then, when
two or more BSs exist, the Pearson correlation coefficient in
the Rural area reaches almost a perfect value (i.e., 0.999).
For the urban areas, the Pearson correlation coefficient values
are, in general, similar and the difference between Urban1 and
Urban2 decreases for a higher number of the BSs. For only
one BS, the correlation coefficients for both urban areas vary
by about 0.09 due to the effect of the BSs location and the
fixed obstacles’ (i.e., buildings) locations. Then, already for
two BSs, the difference is only below 0.03, and for three BSs,
the Pearson correlation coefficients are almost the same for
both areas (the difference is less than 0.01). We see, in Fig. 5,
that for three or more BSs the correlation coefficient almost
saturates for both urban areas reaching, approximately, their
maximal values. Note that the Pearson correlation coefficient
achieved by the urban areas (i.e., around 0.95) is lower
compared to the Rural area (i.e., 0.999) because the cellular
channel gains are less random in the Rural area where the
buildings are absent and only LOS channels are present.

Fig. 6 shows the regression plot for Rural (Fig. 6a),
Urban1 (Fig. 6b), and Urban2 (Fig. 6c) with L = 3 BSs
and considering 1 000 testing samples from the test set.
In general, we see that the values of the path loss in the
urban areas are spread in a wider domain compared to the
Rural area. This is because of the presence of the FOs and,
thus, also NLOS links as explained in Section IV-A. Note
that the path loss values in the Urban2 area are spread a
little bit more (up to 220 dB) comparing to the Urban1 area
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Fig. 6. Regression plot for L = 3 BSs.

Fig. 7. Pearson correlation coefficient between the true and the predicted
D2D channel gains versus number of learning samples for L = 3 BSs.

(up to 200 dB) as the former one contains more FOs than the
latter one. We can also see, in Fig. 6a, that the predicted path
loss (i.e., 10log10(1/g∗i,j)) matches almost perfectly the true
path loss (i.e., 10log10(1/gi,j)) for the Rural area. However,
some deviation of the predicted path losses from the true
values can be seen in Fig. 6b and Fig. 6c in both urban
areas. This deviation is a result of the existence of the FOs
producing some randomness and uncertainty in the values
of the estimated channel gains. Nevertheless, the predicted
and the true path losses are, still, highly correlated and
Pearson correlation coefficient equals 0.94 and 0.934 for the
Urban1 and Urban2 areas, respectively. Actually, the reached
Pearson correlation coefficient in the Urban2 area is almost the
same as that for Urban1 area(the difference is about 0.006).

Note that results presented in Fig. 5 and Fig. 6 are based on
learning with 1 000 000 samples. Consequently, to illustrate
the influence of the number of samples on the learning accu-
racy, Fig. 7 shows Pearson correlation coefficient over number
of samples for the Rural and both of the urban areas. In all
areas, the correlation coefficient increases with the number
of samples rapidly at the beginning for lower numbers of

the samples. Then, the correlation coefficient increment with
the number of learning samples becomes negligible and the
Pearson correlation coefficient saturates to (almost) a fixed
maximal value. We further see that, in the Rural area, 10 000
samples are sufficient to reach almost a perfect matching
between the predicted and the true D2D channel gains. For
both urban areas, more samples should be collected due to
the higher difficulty of constructing the regression model that
connects the cellular channel gains to the D2D channel gains
if the FOs are present and randomize the path loss. In detail,
Fig. 7 illustrates that the values of the Pearson correlation
coefficient in the Urban2 area are higher compared to the
Urban1 area for low number of samples. This is explained by
the fact that the outdoor space is smaller in the Urban2 and,
thus, fewer learning samples (compared to the Urban1) can
give a clearer idea about the general relation between the
cellular and the D2D gains. Thus, the Pearson correlation
coefficient is closer to the saturation value in the Urban2 area
with respect to the Urban1 area for low number of samples.
However, with the increasing number of samples, the DNN
used for the Urban1 starts to learn the topology of the area
and the Pearson correlation coefficient increases and saturates
to a final value that is slightly higher than the one reached in
the Urban2 area. The reason is that the higher number of FOs
in the Urban2 makes it harder for the DNN to memorize the
corresponding network topology and to extract the relation
between the cellular and the D2D gains. Notice that, for
both urban areas, even 10 000 samples are enough to reach
correlation coefficients above 0.88.

In Fig. 8, we show the effect of the possible noise and
inaccuracy in the estimation (measurement) of the conven-
tional cellular channels by the BSs. To this end, we define
SNRG as zero-mean Gaussian noise (i.e., the error) added to
the modeled cellular channel gain estimation. Hence, SNRG

represents the cellular channel gain estimation accuracy and
it is expressed as the ratio between the true cellular channel
gain (UE to BS) and the noise representing an error in
estimation of the UE to BS channel. Thus, we add the
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Fig. 8. Pearson correlation coefficient between the true and the predicted
D2D channel gains versus the cellular channel estimation accuracy represented
via estimation SNR (L = 3BSs).

noise of N (0, e) (where SNRG = 10log10(
Gi,l

e ) dB) to the
estimated cellular channel gain Gi,l. Fig. 8 shows that, with
the increasing accuracy of the estimated cellular channels,
the correlation coefficient between the true and predicted
D2D channel gains increases gradually until the saturation is
reached when SNRG is equal to 25 dB, 20 dB, and 17.5 dB
for the Rural, Urban1, and Urban2 areas, respectively. This is,
however, an interesting behaviour where a higher probability
of LOS leads to a higher sensitivity of the prediction scheme
to the channel estimation noise. Consequently, the trained
model for the D2D channel prediction in the Rural area is
more sensitive to the channel estimation noise than the trained
model for the Urban1 area. Similarly, the trained model for the
D2D channel prediction in the Urban1 area is more sensitive
to the channel estimation noise than the trained model for
the Urban2 area. The reason is that, in the Urban2 area,
more space is occupied by the FOs (i.e., buildings) compared
to the Urban1 area, while the Rural area contains no FOs
(i.e., the LOS probability in the Rural area is higher than in
the Urban1 area, and the LOS probability of the Urban1 area
is higher than in the Urban2 area).

C. Performance of D2D Communication Aided by the
Prediction Scheme

In this subsection, we show the impact of exploiting the
proposed D2D channel prediction scheme based on machine
learning for the D2D communication in the mobile network.
For this purpose, we adopt two up-to-date RRM algorithms,
one for the channel allocation in the D2D shared mode [20]
and one greedy algorithm for a binary power control in the
D2D dedicated mode [21]. For both algorithms, we compare
the performance (i.e., sum capacity of D2D pairs and the
number of channels need to be estimated) in the case when
these algorithms are supported by our proposed D2D channel
prediction scheme with the case when these algorithms are
implemented without the machine learning-based prediction
approach according to the respective original papers [20]
and [21]. The purpose of this comparison is to show that the
performance of the existing RRM schemes reached with the

proposed prediction scheme is not impaired while a substantial
reduction in signaling overhead is achieved. Note that, in the
legend of this subsection’s figures, CA and PC are used to
denote channel allocation scheme from [20] in the shared
mode and binary power control from [21] in the dedicated
mode.

Fig. 9a shows the sum capacity of D2D pairs over the
number of D2D pairs communicating in the shared mode and
with the channel allocation scheme from [20] implemented
on the true and the predicted D2D channel gains. Fig. 9a
illustrates that, by comparing the sum capacity reached when
the true D2D gains are known and when the predicted D2D
channel gains are used, the capacity loss induced by the
prediction scheme reaches 0%, 4%, and 6% for the Rural,
Urban1, and Urban2, respectively. This behavior is expected
as the Rural area contains no FOs and our prediction scheme
reaches a higher Pearson correlation coefficient in this Rural
area comparing to the Urban1 and Urban2 areas. Moreover,
the Urban1 area contains less FOs and our prediction scheme
reaches a slightly higher Pearson correlation coefficient in the
Urban1 than in the Urban2, thus a lower gap in the sum
capacity between the true and the predicted gains is achieved
in the Urban1 area.

Note that, In Fig. 9a, the changes of the sum capacity of
D2D pairs over different numbers of D2D pairs, in all areas,
follows the behavior described in [20].

The performance of the greedy algorithm for binary power
control in D2D dedicated mode from [21] is shown in Fig. 9b,
where the D2D pairs are considered to reuse the whole
bandwidth. Then, the greedy algorithm is implemented to
make a binary transmission power decision for each D2D
pair with true and predicted D2D channel gains. In the Rural
area, a perfect matching between the binary power control
implemented on true and on predicted gains is achieved due
to the very high accuracy in the prediction of the D2D channel
gains. In the urban areas, only a small loss in the sum capacity,
ranging from 1% (for two pairs) to 9% (for ten pairs) in
both the Urban1 and the Urban2 areas, is introduced by
implementing the binary power control on the predicted D2D
channel gains comparing to the binary power control based
on the true gains. However, such a loss can be expected by
the fact that making a binary decision about the transmission
power of each D2D pair is critical and highly sensitive to the
accuracy of the predicted D2D channel gains. Nevertheless, ten
D2D pairs in proximity reusing a single channel is an extreme
case that is not expected to occur often in the real network.
In contrast, a reasonable case is when, approximately, four
or six D2D pairs reuse a single channel. For instance, with
four D2D pairs, the binary power control implemented on the
predicted D2D channel gains loses only 2.9% and 3.9% in
the Urban1 and Urban2 areas, respectively, comparing to the
binary power control with full knowledge of the true D2D
channel gains. Such small difference between the Urban1 and
the Urban2 areas is understandable as the Urban1 area contains
less FOs, and our prediction scheme reaches a slightly higher
Pearson correlation coefficient in the Urban1 area than in the
Urban2 area.
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Fig. 9. Sum capacity of D2D pairs versus number of D2D pairs when channel allocation scheme from [20] for D2D shared mode (a), and binary power
control algorithm from [21] for D2D dedicated mode (b), are implemented on the true and the predicted D2D channel gains (L = 3 BS and M = 10 CUEs).

Fig. 10. Signaling overhead in terms of number of channels need to
be estimated by the network versus number of D2D pairs; when channel
allocation scheme from [20] or binary power control from [21] is implemented
on true and predicted D2D channel gains (L = 3 BS and M = 10 CUEs).

Note that, In Fig. 9b, the changes of the sum capacity of
D2D pairs over different numbers of D2D pairs, in all areas,
follow the behavior described in [21].

In Fig. 10, we show the signaling overhead in terms of the
number of channels estimated by the network if the channel
allocation scheme from [20] and the greedy algorithm for
binary power control from [21] are implemented on true and
predicted D2D channel gains. As shown in Fig. 10, for both
the channel allocation scheme from [20] and the power control
algorithm from [21], the number of estimated channel gains
with the proposed prediction scheme is significantly lower than
when all the channel gains would need to be estimated. More
specifically, we need to estimate/report up to approximately
seven times less channel gains if the proposed DNN-based
prediction is used for the channel allocation scheme from [20]
or the power control algorithm from [21] comparing to the case
when the knowledge of all gains would be required.

D. Robustness of the Proposed Scheme

In this subsection, we analyze the robustness of the proposed
scheme when the offline simulation-based trained DNN is used

to predict the D2D channel gains in the real-world environment
that differs from the simulated area used for training or if the
real-world environment changes.

First, we study the impact of moving obstacles’, MOs,
presence in the real-world urban area(s) on the proposed
prediction scheme as the presence and the movement of these
MOs is not captured during the offline training by means
of simulations. In this respect, up to 30 MOs representing,
e.g., vehicles or position-changing obstacles, are uniformly
distributed outdoor in both urban areas (see Fig. 11). The
dimensions of each MO and its attenuation are also uniformly
generated such that the length of the MO is between 2 and 6 m,
the width varies from 0.5 to 2 m, the height is from 1.5 to 3 m,
and the attenuation varies between 1 and 5 dB. Note that
all above-mentioned values are regenerated randomly in every
simulation drop.

In Fig. 12, we analyze the effect of the MOs on the channel
allocation algorithm from [20] and the binary power control
algorithm from [21] while four D2D pairs are considered.
As expected, the difference between the sum capacity when
the D2D true channel gains are known and the case when
the prediction scheme is exploited, increases with the number
of MOs in the area. This is due to the signal attenuation
differences induced by the MOs’ presence in the environment
with respect to the training one simulated without those MOs.
Particularly, for the channel allocation and with 30 MOs in the
area, the additional capacity losses are 2.4% (5.7% − 3.3%)
and 0.6% (3.8% − 3.2%) for the Urban1 and Urban2 areas,
respectively (see Fig. 12a). In the case of power control
(Fig. 12b), the additional capacity losses for 30 MOs in the
area are 2% (5% − 3%) and 0.4% (4.4% − 4%) for the
Urban1 and Urban2 areas, respectively. Such low losses are
acceptable considering the fact that no specific D2D channel
measurements are required and, still, the D2D communication
can be enabled due to our proposed channel prediction.

Fig. 12 also shows that the prediction scheme is more
sensitive to the MOs’ existence in the Urban1 area compared
to the Urban2 area. In fact, this is in line with Fig. 8, which
shows that the higher ratio of LOS communication in the
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Fig. 11. Example of simulation deployment with 30 vehicles (moving obstacles) represented by the orange elements, in addition to the buildings (fixed
obstacles) represented by the pink rectangles. Note that the red triangles represent the BSs.

Fig. 12. Effect of the vehicles (moving obstacles) for four D2D pairs, N = 4.

area (i.e., the lower number of obstacles) leads to a higher
sensitivity to the noise in the channel gains estimation. Note
that the attenuation added by the MOs can be considered
as noise because its unpredictable. Hence, the MOs presence
affects the Urban1 area more than the Urban2 area, as the
Urban1 contains a larger area where LOS communication is
possible due to the smaller space occupied by the buildings.

Second, we test the case when the trained DNN is utilized
in the urban areas with changed volumes of the buildings
(i.e., the fixed obstacles, FOs), see Fig. 13. In our evaluation,
the volume of every FO can either increase (the probability of
this is set to 0.5) or decrease (the probability of this is also set
to 0.5). Then, the percentage of the changes in the volume of
every FO is randomly generated so that the average change in
the FOs’ volume is fixed and corresponds to the targeted value
of the change in order to present the results in the figures (i.e.,
the x axis in Fig. 14 represents the average change in the
volumes of the FOs). We consider that the average percentage
of FO’s change is up to 25% and, without loss of generality,
the change in the volume of any FO is divided equally over its
three dimensions (i.e., length, width, and height). For instance,
if the FO’s volume decreases by 25%, every dimension of

this FO is decreased by approximately 9%. Fig. 13 shows an
example of the real Urban1 and Urban2 areas after the changes
in the volumes of FOs’ with respect to the simulated volumes
of the FOs that are used for training.

In Fig. 14, we show the effect of the changes in the volumes
of the FOs on the channel allocation algorithm from [20]
and the binary power control algorithm from [21] in both
urban areas and with four D2D pairs. Similar to the MOs
case, the sum capacity reached when the proposed prediction
scheme is exploited modestly decreases comparing to the case
when the D2D true channel gains are known. This decrease is
slightly more notable for larger changes in the volumes of the
FOs as expected. However, the capacity decrease induced by
the FOs’ volume changes is only up to 2.1% (5.5%−3.4%) and
1.4% (5%−3.6%) in the case of channel allocation (Fig. 14a)
for the Urban1 and Urban2 areas, respectively. Similarly,
the power control (Fig. 14b) is affected only negligibly by
up to only 1.8% (5% − 3.2%) and 1.1% (4.9% − 3.8%) for
the Urban1 and Urban2 areas, respectively. Comparing the
sensitivity of the Urban1 and Urban2 areas to the changes
in the volume of FOs, we see that the Urban1 area is slightly
more sensitive to the changes in the FOs’ volumes. This is,
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Fig. 13. Example of simulation deployment with a 25% average change in the volumes of the buildings (fixed obstacles) represented by the pink rectangles,
compared to their volumes in Fig. 4. Note that the red triangles represent the BSs.

Fig. 14. Effect of the changes in the volumes of the buildings (fixed obstacles) for four D2D pairs, N = 4.

however, expected due to the higher influence of the channel
estimation noise on the Urban1 area, which is a result of
the higher LOS probability compared to the Urban2 area as
explained for the MOs.

These encouraging results, confirm the robustness of the
proposed prediction scheme against the changes in the
real-world environment and the potential inaccuracies in the
training phase.

V. CONCLUSION

In this paper, we have proposed a novel D2D channel gains
prediction scheme based on the cellular channel gains between
the UEs and multiple BSs. The proposed prediction scheme
takes the advantage of the network topology-related correlation
between the cellular and D2D channel gains. Supervised
learning-based approach exploiting deep neural networks has
been implemented to extract the mapping between the cellular
channel gains of any couple of the UEs (i.e., gains of channels
between these two UEs and multiple BSs) and the gain of
the D2D channel between these two UEs. The proposed
prediction scheme achieves a high Pearson correlation coeffi-
cient between the true and the predicted D2D channel gains.
In addition, we show that the proposed prediction scheme

significantly reduces the networks’ signaling (represented by
channel state information) overhead if applied to realistic radio
resource management algorithms. This saving of the channel
information is at the cost of only a negligible performance
losses in terms of communication capacity comparing to the
conventional implementation of these algorithms with knowl-
edge of all channels. We have also demonstrated that the
proposal is robust and resilient to the possible changes in the
environment induced by various moving obstacles or potential
changes in the fixed obstacles (e.g., the buildings) that exist
in the area.

The future work should focus on improving the prediction
scheme performance (prediction accuracy) for scenarios with
buildings and obstacles existence. Moreover the future work
should include studying the proposed prediction scheme per-
formance for more RRM algorithms and in different possible
scenarios and cellular cell types.
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