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Abstract—Flying base stations (FlyBSs) are widely used to
improve coverage and/or quality of service for users in mobile
networks. To ensure a seamless mobility of the FlyBSs among
the static base stations (SBSs), an efficient handover mechanism
is required. We focus on the handover of FlyBSs among SBSs
and we dynamically adjust the cell individual offset (CIO) of
the SBSs based on their load to increase the sum capacity
of the users served by the FlyBSs while considering also a
handover cost. Due to complexity of the defined problem and
limited knowledge of other parameters required for conventional
optimization methods, we adopt Q-learning to solve the problem.
For Q-learning, we define a reward function reflecting the trade-
off between the capacity of users and the cost of performed
handovers. The proposed Q-learning based approach converges
promptly and increases the sum capacity of the users served by
the FlyBSs by up to 23% for eight deployed FlyBSs comparing
to state-of-the-art algorithms. At the same time, the number of
handovers performed by the FlyBSs is notably reduced (up to
25%) by the proposal.

Index Terms—Flying base station, handover, cell individual
offset, reinforcement learning.

I. INTRODUCTION

The flying base stations (FlyBSs), represented by the un-
manned aerial vehicles (UAVs) carrying a hardware for wire-
less communication, are seen as a suitable solution for the
future mobile networks due to a flexible deployment and
a high mobility. The FlyBSs allow to extend the network
coverage or to boost quality of service in a specific area
[1]. Due to a fast and prompt deployment, the FlyBSs are
suitable for emergency situations or short-time events [2].
However, an integration of the FlyBSs to the mobile networks
introduces new challenges, such as finding an optimal position
of the FlyBS [3], optimizing the FlyBS’s trajectory and power
allocation [4], or an association of user equipments (UEs) to
the FlyBSs [5].

Another key challenge is related to a seamless mobility of
the FlyBSs among the static base stations (SBSs) [6]. The Fly-
BSs move over time and their trajectory is arbitrary and hard
to be predicted, as the FlyBSs are positioned according to the
movement of the served UEs. The arbitrary trajectory can lead
to rapid changes in the quality of channels between the FlyBS
and the served UEs as well as between the FlyBS and the static
base station (SBS) that provides connectivity of the FlyBS to
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the network. These rapid changes in the channel quality can
result in unpredictable and frequent handovers of the FlyBSs
among the SBSs and, consequently, to a handover failure,
packet losses, and/or overloading of some SBSs. Therefore,
an efficient handover mechanism of the FlyBSs among the
SBSs is required to provide a reliable communication of the
UEs through the FlyBSs.

In conventional mobile networks, the handover of the UE
between the SBSs is commonly initiated when a target SBS
(i.e., the base station to which the handover should be per-
formed) provides a channel of a higher quality than the current
serving SBS. To avoid frequent handovers and/or handover
failures, the decision on the handover is tuned via control
parameters, such as, a hysteresis, a time-to-trigger (TTT),
or cell individual offset (CIO) (please refer to [7] for more
details). Thus, the handover usually takes place when the target
SBS provides the channel of a quality that is at least the
hysteresis and/or the offset(s) above the quality of the channel
to the serving SBS for an interval of the TTT.

In the conventional mobile networks without the FlyBSs,
the optimization of the hysteresis, TTT, and the offsets is
heavily addressed. For example, in [8], the authors propose
an adaptation of the hysteresis according to relative qualities
of the channels from the serving and neighboring SBSs. This
approach reduces the number of handovers; however, it does
not improve the UEs’ throughput. In [9], the authors adapt
the hysteresis via fuzzy logic to minimize the number of
performed handovers. However, an impact of the handover
on the throughput of the UEs is not considered. A reactive
load balancing algorithm based on reinforcement learning is
developed in [10]. The reactive algorithm is based on an adap-
tation of the CIO. The CIO is a cell-specific handover control
parameter enabling to control the association of the UEs with
the SBSs and to regulate a load of the SBSs. In general, the
CIO of the overloaded SBS is set to a lower value and the CIO
of the target SBS is increased. The authors adjust the CIO of
the serving and neighboring SBSs by a specific value so that
the offset for the serving and neighboring SBSs is of the same
absolute value, but opposite sign (e.g. −0.5 dB and +0.5 dB
for the serving and neighboring SBSs, respectively). The CIO
adjustment in [10] is based on a distribution of the cell-edge
UEs in the area. However, the UEs’ distribution is typically
unknown in practical scenarios. In [11], the authors adjust
CIO for the load balancing purposes. Three predetermined



thresholds are defined to distinguish four levels of the SBSs’
load. A higher CIO is selected for the SBS with a lower load,
and a lower CIO is set for the highly loaded SBSs. This
CIO adjustment relieves the heavy traffic load of the SBS;
however, it does not improve the UEs’ throughput. In [12], a
UE association algorithm based on reinforcement-learning is
proposed to reduce the number of handovers in the network
with FlyBSs and also a FlyBS mobility control algorithm
is adopted to optimize the system throughput. The proposed
algorithm reduces the number of handovers performed by the
UEs, while increasing the throughput of the system; however,
the backhaul links with the SBSs are not taken into account.

Few works study the problem of handover in the networks
with the UEs represented by the UAVs. The handover manage-
ment for the UAV acting as the UE via a dynamic adjustment
of the SBSs’ antenna tilt angles is outlined in [13]. The
authors demonstrate that an intelligent antenna tilting reduces a
handover rate for a simple mobility scenario with the UAV UE
traveling along a linear trajectory. In [14], the authors propose
a scheme adjusting the handover parameters for the UAVs
UEs and making the handover decision based on the UAV’s
trajectory to reduce the number of performed handovers. In
[15], the handover based on the reinforcement learning is
proposed to maximize the received signal quality at the UAV
UEs while minimizing the number of handovers performed by
these UAV UEs. Despite the encouraging results, the works
[13] - [15] assume the scenario with a predefined and a
priori known trajectory of the UAV UEs. This assumption is,
however, not valid in the scenario with the UAVs acting as
the FlyBSs serving the moving UEs, since the trajectory of
the FlyBSs is unknown and depends on the UEs’ movement.
In our prior work [16], we investigate the CIO adjustment
in the scenario with multiple SBSs, but just single FlyBS.
The proposed reinforcement learning based algorithm adjusts
CIO according to the load of SBSs to maximize the sum
capacity of the UEs served by the FlyBS. However, a cost
of handovers (e.g., signaling overhead and related additional
energy consumption) is not taken into account, hence, the
solution can lead to redundant handovers.

None of the existing papers targets an optimization of the
handover of multiple FlyBSs to maximize the sum capacity
while also avoiding an excessive number of performed han-
dovers. Hence, in this paper, we propose a framework for a
management of handovers of the FlyBSs among the SBSs
to maximize the sum capacity of the users in the scenario
with multiple FlyBSs taking the handover cost into account
to avoid redundant handovers. Due to a dynamic nature and
an unpredictable behavior of the UEs (and consequently also
FlyBSs serving these UEs) we employ Q-learning to set a
proper CIO for individual SBSs. The CIO is dynamically ad-
justed using Q-learning to provide an efficient mobility support
in the sky. To adapt Q-learning to our targeted problem, we
introduce a new reward function taking the impact of handover
on the sum capacity as well as the handover cost into account.
Moreover, we consider the communication load implied by the
FlyBSs (i.e., load generated by the UEs served by individual

Fig. 1: System model for handover of multiple FlyBSs serving
mobile UEs among SBSs.

FlyBSs) in the process of CIO determination. This allows to
avoid overloading of the SBSs and, consequently, to prevent
unnecessary handovers caused by SBSs’ overloading. The
proposed solution leads to a notable increase in the UEs’ sum
capacity and a decrease in the number of handovers compared
to state-of-the-art solutions including our prior work [16].

The rest of this paper is organized as follows. Section II
presents the system model and defines the problem addressed
in this paper. Then, in Section III, we present our proposed
reinforcement learning-based determination of the CIO for the
SBSs. The simulation results and their discussion are provided
in Section IV. Section V concludes the paper.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we first outline the system model considered
in this paper. Then, we formulate the targeted problem.

A. System model

We assume N UEs deployed in the area covered with KS

conventional SBSs and additional KF FlyBSs. In total, there
are K = KS+KF base stations (BSs). Note that the label BS
represents both the SBSs and the FlyBSs in this paper. All UEs
in the system require a certain communication capacity creq.
For a clarity of the following explanations and presentation
of results, we assume the same creq for all UEs. However,
our proposed solution is suitable for any, even diverse, creq
of individual UEs. Out of N UEs, Nu UEs cannot receive
creq from the SBSs (e.g., due to a high load of the SBSs).
These Nu UEs, denoted as uncovered UEs, are connected to
the network via the FlyBSs, which relay the communication
from the adjacent SBS to the uncovered UEs.

The position of the n-th UE changes over time and the
FlyBSs follow the uncovered UEs. To maintain a reliable
connectivity, each FlyBS performs handovers during flight
and, thus, the association of the FlyBSs to the SBSs changes
as well over time. We define a binary parameter βFlyBS

k,f

to indicate if the f -th FlyBS is associated to the k-th SBS
(βFlyBS

k,f = 1), or not (βFlyBS
k,f = 0). Like in [17], the position

of each FlyBS corresponds to the center of gravity of all UEs
associated to this FlyBS. Note that our proposed solution for
the CIO adjustment does not depend on the positions of the



FlyBSs and can be applied together with any other approaches
for the determination of the FlyBSs’ positions.

In our model, we consider the downlink communication
from the SBSs to the UEs either directly or via the FlyBSs. The
signal to interference plus noise ratio (SINR) γf,n observed
by the n-th UE from the f -th FlyBS is defined as:

γf,n =
Pfhf,n∑K

i=1,i̸=f Pihi,n + σ2
(1)

where Pf is the transmission power of the f -th FlyBS serving
the n-th UE, hf,n is the channel gain between the n-th UE
and the f -th FlyBS, the term

∑K
i=1,i̸=f Pihi,n represents the

co-channel interference from other BSs, Pi is the transmission
power of the i-th BS representing the interference to the n-th
UE, hi,n corresponds to the channel gain between the n-th UE
and the i-th interfering BS, and σ2 represents the noise.

Similarly, the SINR at the f -th FlyBS receiving data from
the k-th serving SBS is expressed as:

γk,f =
Pkhk,f∑K

i=1,i̸=k Pihi,f + σ2
(2)

where hk,f is the channel gain between the k-th serving
SBS and the f -th FlyBS,

∑K
i=1,i̸=k Pihi,f represents the

interference from other BSs, and hi,f stands for the channel
gain between the i-th interfering BS and the f -th FlyBS.

As we adopt decode and forward relaying, the relaying
channel capacity for the communication of the the n-th UE
via the f -th FlyBS is defined as [18]:

cn =
Bn

2
min{log2(1 + γk,f ), log2(1 + γf,n)} (3)

where Bn denotes the bandwidth of the n-th UE’s channel.
The k-th BS serves a set of the UEs generating the load ρk

to this BS. The load is defined as the ratio of the bandwidth
allocated to the UEs associated to the k-th BS versus the total
amount of bandwidth available for the given BS, i.e.:

ρk =

∑N
n=1 β

UE
k,nBn

B
(4)

where the binary parameter βUE
k,n ∈ {0, 1} indicates if the n-th

UE is associated to the k-th BS (βUE
k,n = 1), or not (βUE

k,n = 0),
and B is the total bandwidth available for the k-th BS.

As the FlyBSs follow the moving UEs, each FlyBS can
perform handover(s) among the SBS during the flight. Like
common UEs in the mobile networks, also the FlyBS measures
the channel quality from the neighboring SBSs. The channel
quality measurement report is periodically sent to the serving
SBS in a similar way as the common UEs report their channel
quality in the mobile networks [13]. Based on the measurement
results, the serving SBS decides to handover the FlyBS to
one of the neighboring SBSs if a higher signal quality can be
reached. We consider the handover based on the A3 event [7]
that involves the hysteresis, TTT, and CIO. The channel quality
is represented by the received signal strength (RSS) expressed
as RSSk,f = Pkhk,f . The FlyBS performs the handover to the

target SBS if the target SBS satisfies the following condition
for more than the period of TTT:

RSSt + CIOt −Hys > RSSs + CIOs (5)

where the indices s and t correspond to the parameters of the
serving and target SBSs, respectively, and Hys is the value of
hysteresis parameter in dB.

B. Problem formulation

In this paper, we focus on the handover of the multiple
moving FlyBSs among the SBSs. The objective is to adjust
CIOs of the SBSs so that the sum capacity of the UEs
served by the FlyBSs is maximized. However, using the sum
capacity as a sole objective could lead to an excessive number
of redundant handovers resulting in an additional signaling
overhead increasing an energy consumption, which is a critical
factor for the FlyBSs. Thus, the number of handovers is also
accounted for to enable affordable cost for network operation.
Consequently, the targeted problem is formally defined as:

CIOCIOCIO =argmax
CIOCIOCIO∈O

Nu∑
n=1

cn − µ (6)

subject to

K∑
k=1

βUE
k,n = 1, ∀n ∈ ⟨1, N⟩, (6a)

KS∑
k=1

βFlyBS
k,f = 1, ∀f ∈ ⟨1,KF ⟩, (6b)

N∑
n=1

βUE
k,nBn ⩽ B, ∀k ∈ ⟨1,KS⟩. (6c)

where O = ⟨CIOmin, CIOmax⟩ defines the set of possible
CIO values ranging from CIOmin to CIOmax and µ denotes
the handover cost. The constraint (6a) ensures that each UE is
associated to just one BS and the constraint (6b) ensures that
each FlyBS is associated to just one SBS. Furthermore, the
constraint (6c) guarantees that the SBSs do not allocate more
bandwidth than available.

III. PROPOSED CIO ADJUSTMENT BASED ON Q-LEARNING

The problem defined in (6) is complex given a high ran-
domness of the network environment caused by the mobility
of both the UEs and the FlyBSs. This problem can be
solved by non-linear optimization techniques. However, these
optimization-based techniques require the exact knowledge
of the network state including locations of the UEs and the
FlyBSs, which might not always be available. Moreover, even
with the perfect information of all relevant parameters, such
optimization problem is NP-hard due to its definition as a
non-convex function and difficult to solve efficiently. Thus, we
adopt the reinforcement learning to adjust CIO of the SBSs for
handover decision of the FlyBSs. Unlike other machine learn-
ing algorithms, which exploit historical data, the reinforcement
learning allows the network to learn and improve its decision
by interacting with an unknown environment through time. We
propose the Q-learning-based algorithm to obtain the optimal



CIO adjustment policy for the serving as well as target SBSs.
In this section, we first briefly introduce the background in
reinforcement learning related to our targeted problem, then,
we present the proposed CIO adjustment scheme.

A. Preliminaries on Reinforcement Learning

In the reinforcement learning, an agent interacts with an
environment based on a set of given actions. Reinforcement
learning is often described via Markov decision process (MDP)
characterized by a tuple consisting of (S,A, P,R), where
S and A denote the sets of all possible states and actions,
respectively, P denotes the transition probabilities for the
states when a particular action is taken, and R is the reward
function [19]. At each state, the MDP takes the action that
maximizes the expected sum of discounted future rewards. In
many practical reinforcement learning problems, the models
defining the P and R are not available. In these problems,
the optimal policy can still be derived using a model-free
reinforcement learning algorithm known as Q-learning. The Q-
learning is typically simpler and more flexible to implement
than the model-based algorithms, since the dynamics or the
model of the environment are not required to be known a
priori. Assuming π is the policy of choosing the actions, the
Q-value Qπ(s, a) for every state-action pair indicates how
good the action a performed in that state s is. Using an
iterative process, the agent eventually learns the optimal Q-
values Q(s, a) over time. When the agent performs the action
at in the state st at the time t, an immediate reward rt is
received and the agent transits to the state st+1. The new Q-
value is evaluated using:

Q(st, at)← Q(st, at)+α[ rt+λmaxQ(st+1, a)−Q(st, at)] ,
(7)

where α ∈ (0, 1] is the learning rate that balances new
information against previous knowledge, and λ ∈ (0, 1) is
the discount factor that balances between the immediate and
future rewards. We adopt the ϵ-greedy policy, where the agent
tries to obtain the highest reward at each training step, but
also checks for other actions, which can improve the estimated
future reward [19]. The learning starts with ϵ = 1, then, ϵ is
continuously reduced to ϵ = 0 via multiplication by the decay
factor η = 0.99 at each learning step [13].

B. Q-learning for CIO adjustment

The objective defined in (6) is interpreted as the problem,
where the agent maximizes its final cumulative reward by
interacting with an unknown environment over time. The
FlyBS is usually constrained with a limited energy and any
additional energy consumption is not welcome. Thus, we
assume that the network is equipped with a central agent, e.g.,
in an edge server or a (software) entity in the operator’s core
network, that can monitor the load of the BSs and implement
Q-learning. However, the proposed solution does not depend
on the agent representation and can be applied also in the case
when each FlyBS acts as an agent.

The sets of states and actions and the reward func-
tion for our targeted problem are defined as follows. The

Algorithm 1 Q-learning for CIO adjustment

1: Input: number of SBSs and FlyBSs, BSs’ load, action set
(possible CIO values)

2: initialize Q(s, a) and S(1)
3: for each learning step t do
4: for each FlyBS f do
5: choose action A(t) using ϵ-greedy policy
6: perform action A(t) and update CIOs for SBSs
7: if A3 event handover trigger condition (5) satisfied
8: perform handover
9: end if

10: calculate r(t) using (8)
11: update Q-table using (7)
12: S(t)← S(t+ 1)
13: end for
14: end for
15: Output: Q-table

state of the network is represented by the load of the
SBSs. Thus, the set of states S(t) is defined as S(t) =
[ ρ1(t), ρ2(t), . . . , ρk(t), , ρf (t)] , where ρk(t) ∈ [0, 1] corre-
sponds to the load of the k-th SBS at the time t, and ρf (t) ∈
[0, 1] corresponds to the load generated by the f -th FlyBS (i.e.,
by the UEs served by this FlyBS) at the time t. The action
is understood as a selection of the CIO for each SBS. Thus,
the agent determines the CIOs for the SBSs via a selection
of suitable actions A(t) = [CIO1(t), CIO2(t), . . . , CIOk(t)],
where the CIOk(t) corresponds to the CIO of the k-th SBS
at the time t. The values of CIOk(t) are selected from
the discrete set of ⟨CIOmin, CIOmax⟩ dB of a size L.
As we target the maximization of the sum capacity of the
Nu UEs served by the FlyBSs (see (6)) and avoiding the
redundant handovers by taking into account the cost associated
to handover events, the reward function r(t) ∈ ⟨0, 1⟩ at the
time t is defined as:

r(t) =
1

creq

(∑Nu

n=1 cn(t)

Nu
− nhµu

)
, (8)

where cn(t) is the channel capacity of the n-th UE served
by the FlyBS at the time t, the term nhµu represents the
handover cost µ, nh is the number of UEs served by the FlyBS
performing handover, and µu denotes the handover cost for the
UE.

The pseudo-code of the proposed Q-learning process is
presented in Algorithm 1. First, the Q-table is initiated with
random values from interval (0, 1) (see line 2 in Algorithm 1).
Based on the current state S(t), the ϵ-greedy policy is per-
formed to choose either the random or optimal action (see line
5). Afterwards, the chosen action is performed (line 6). If A3
handover trigger condition is satisfied (lines 7-9), the FlyBS
performs the handover from the serving SBS to the target SBS.
Then, the reward of the handover is calculated according to
(8) (line 10). Finally, values for selecting different actions are
updated in the Q-table according to (7) (line 11).



TABLE I: Simulation Parameters
Parameter Value
Simulation area 1000m × 1000m
Carrier frequency 2 GHz
Tx power of SBS/FlyBS 23/15 dBm
Bandwidth of SBS 100 MHz
SBS/FlyBS/UE height 30/80/1.5 m
Number of UEs 150
Hysteresis margin 3 dB
Time step 1 s
CIO set {-6, -3, 0, 3, 6} dB [22]

IV. PERFORMANCE EVALUATION

In this section, we evaluate the performance of our proposed
Q-learning-based CIO adjustment scheme via simulations in
MATLAB. We consider a suburban scenario with the simu-
lation area of 1000×1000 m. Within this area, three conven-
tional SBSs are deployed randomly with a minimum inter-site
distance of 500 m (see Figure 1). Furthermore, up to eight
FlyBSs are placed in the simulation area. The position of
each FlyBS corresponds to the center of gravity of all UEs
associated to this FlyBS [17]. Note that the proposed solution
can be applied together with any other approach of the FlyBSs’
positioning. The BSs serve 150 UEs moving with a random
speed varying between 1.0 and 1.8 m/s. Out of all UEs, 60 UEs
are randomly distributed and deployed uniformly around the
SBSs within a circle with a radius of 150 m. Another 30 UEs
are deployed uniformly within the simulation area and they
move independently according to a random waypoint mobility
model. The remaining 60 UEs of are uniformly distributed into
up to eight clusters. The number of UEs in each cluster is also
random. The UEs in the same cluster are located within a circle
with a radius of 80 m. All UEs within one cluster follow the
same cluster movement trajectory (defined by the center of the
cluster) and each UE can move arbitrary within the cluster.

The channel between the FlyBS and the ground units (SBSs
and UEs) is modeled as the air-to-ground (A2G) commu-
nication according to [20], with the suburban environment
parameters (“suburban” channel model, i.e., a = 4.88, b =
0.43, ηLoS = 0.1 and ηNLoS = 21, see [20] for more
details). The channel between the SBSs and the UE is modeled
according to [21] with the path loss model 128.1+37.6log10d,
where d (in km) is the distance between the UE and the SBS.

We consider 40 random realizations (deployments). In each
realization, the positions of the UEs, corresponding trajectory
of the FlyBSs, and the positions of the SBSs are random. The
results of all realizations are then averaged out to suppress
impact of randomness in the models. For the Q-learning
training purposes, different settings of α and λ have been
tested and we have observed that α= 0.8 and λ = 0.6 are the
most suitable for the proposed algorithm. The values of CIO
are determined from set {-6, -3, 0, 3, 6} dB [22]. Note that,
we have tested also sets with smaller steps (1 and 2 dB), but
there is no notable impact on performance. Hence, we select
the larger step (3 dB), since the larger the step is, the smaller
the Q-table is. Table I summarizes the major parameters used
in our simulations.

Fig. 2: Sum capacity of UEs served by four FlyBSs for
different µu, creq=25 Mbps.

Fig. 3: Sum capacity of UEs served by FlyBSs.

The performance of the proposed Q-learning algorithm
is compared with following benchmarks and state-of-the-art
approaches: i) no FlyBS deployed, i.e., all UEs served only
by the SBSs, as a benchmark to confirm that the deployment
of the FlyBSs in our scenario is meaningful and the FlyBSs do
not degrade the performance; ii) the CIO adjustment algorithm
from [11], denoted as Adaptive CIO, which sets CIO according
to the predefined relation between the value of CIO and
the average load of the SBSs, iii) the reinforcement learning
algorithm introduced in our prior work [16] for single FlyBS
and without considering FlyBSs’ interaction during handover
process (denoted as Single FlyBS in figures). We consider the
sum capacity of the UEs served by the FlyBSs, defined as∑Nu

n=1 cn(t), as a performance indicator for the evaluation.
Before comparing our proposal with the competitive algo-

rithms, let us demonstrate an impact of the handover cost
µu on the sum capacity. Figure 2 shows the capacity of the
UEs served by four FlyBSs achieved by various handover
algorithms for different handover cost values. A low handover
cost does not negatively impact the sum capacity, since the low
handover overhead is easily compensated by an increase in the
capacity of the handovering UE. However, for higher handover



Fig. 4: Sum capacity of UEs served by FlyBSs, creq=25 Mbps.

cost values, a decrease in the sum capacity is observed (with
similar slope) for all algorithms. This decrease is because
an improved sum capacity due to handover cannot longer
compensate a high handover cost. Based on the handover
management procedure defined by 3GPP [23], the handover
overhead typically ranges in order of dozens to hundreds kb
per UE. Hence, for further analysis, we select µu =100 kb.

Figure 3 shows the sum capacity of the UEs served by the
FlyBSs. The sum capacity raises with creq up to creq = 20
Mbps. Then, for creq higher than 20 Mbps, the sum capacity
becomes almost constant or even starts slightly decreasing.
The decrease in the sum capacity of the UEs with increasing
creq is because, while all UEs (served by any BS) require a
higher capacity, the SBSs still have only the same bandwidth
that can be allocated to the UEs. The proposed algorithm
outperforms both the Adaptive CIO and the Single FlyBS
algorithms and the gain increases with the number of FlyBSs.
For 4 FlyBSs, the proposed algorithm increases the sum
capacity by up to 19% and 12% compared to the Adaptive CIO
and the Single FlyBS algorithms, respectively. This increase in
the UEs’ capacity is because the proposed algorithm prevents
the SBSs’ overloading and distributes the FlyBSs fairly among
the SBSs by setting different CIO of the SBSs for each FlyBS.

More detailed view on the impact of the number of the
FlyBSs on the sum capacity for creq= 25 Mbps is provided in
Figure 4. The proposed algorithm outperforms the Adaptive
CIO and Single FlyBS algorithms for all numbers of the
FlyBSs. Moreover, the relative capacity gain achieved by
the proposed algorithm compared to the competitive schemes
increases with the number of the FlyBSs. For 8 FlyBSs,
the proposed algorithm outperforms the Adaptive CIO and
Single FlyBS algorithms by 23% and 17%, respectively. The
relative gain in capacity achieved by the proposed algorithm
increases with the number of the FlyBSs, since the proposed
algorithm prevents the FlyBSs from connecting to the same
SBS simultaneously to avoid overloading of the SBSs. The
relative capacity gain starts saturating for a higher number of
the FlyBSs. This is due to the limited amount of bandwidth
and the interference among the FlyBSs and the SBSs (the
additional FlyBSs increase interference).

(a) 1 FlyBS (b) 8 FlyBSs

Fig. 5: Learning progress represented by gain in sum capacity
with respect to Adaptive CIO and Single FlyBS algorithms
over number of handovers performed by FlyBSs for creq=25
Mbps.

Figure 5 illustrates the learning progress of the proposal
after individual learning events, i.e., after each handover per-
formed by the FlyBS. The figure depicts the gain achieved by
the proposal in the sum capacity of UEs served by the FlyBSs
with respect to the Adaptive CIO and Single FlyBS algorithms
for 1 FlyBS (a) and 8 FlyBS (b). At the beginning of the
learning, the gain of the proposed algorithm is rather small or
even slightly negative in some steps compared to the Adaptive
CIO and Single FlyBS algorithms. This is a result of the
initial “random” learning when (almost) no information that
would guide the selection of the CIO is available. However,
after a short initial phase (roughly 30 handovers), the gain
becomes always non-negative and increases with additional
handovers. The capacity gain achieved by the proposed algo-
rithm converges and becomes notably positive approximately
after 60 handovers. The figure also illustrates fitting function
for the gain with respect to the Adaptive CIO and Single FlyBS
algorithms. The fitting function confirms that the proposed
algorithm outperforms the Adaptive CIO and Single FlyBS
algorithms in the sum capacity of UEs. Requiring only tens of
handovers to learn the suitable values of CIO and to stabilize
a highly positive gain in the sum capacity is sufficiently fast
to deploy the proposed algorithm in real networks.

To demonstrate that the proposed algorithm does not have
a negative impact on the UEs served by the SBSs, in figure
5, we show the sum capacity of the UEs served only by the
SBSs. The UEs’ capacity for all three compared algorithms
is similar and the proposal even slightly increases the sum
capacity of the UEs attached to the SBSs by up to 3.7% and
1.3% compared to the Adaptive CIO and the Single FlyBS
algorithms, respectively. This confirms that the gain in the
sum capacity of the UEs served by the FlyBSs introduced by
the proposal is not at the cost of a degraded capacity of the
UEs served by the SBSs. This conclusion is valid regardless
of the number of FlyBSs in the network.

Figure 7 depicts the number of handovers performed by
FlyBSs for creq=25 Mbps. The proposed algorithm signifi-



Fig. 6: Sum capacity of UEs served by SBSs for different
number of FlyBS.

Fig. 7: Number of handovers performed by FlyBSs for creq=25
Mbps.

cantly reduces the number of handovers performed by FlyBSs
compared to the competitive schemes and, moreover, the
reduction becomes more significant with increasing number
of the FlyBSs. For example, if eight FlyBSs are deployed, the
proposed algorithm outperforms the Adaptive CIO and Single
FlyBS algorithms by 25% and 19%, respectively. The reduced
number of handovers by the proposed algorithm is a result of
preventing the SBS’s overloading via consideration of the SBS
load and taking the handover cost into account.

V. CONCLUSION

In this paper, we have proposed a novel algorithm managing
handover of multiple FlyBSs among the SBSs to maximize
the sum capacity of the UEs served by the FlyBSs while
taking the handover cost into account. The proposed algorithm
exploits Q-learning to adjust CIO of the SBSs for each FlyBS
according to the load of SBSs and the traffic generated by
the UEs served by the FlyBSs. The results show that the
gain introduced by the proposed algorithm with respect to the
competitive works increases with the number of FlyBSs de-
ployed in the system. The proposed Q-learning based approach
outperforms the state-of-the-art solutions in the sum capacity

of UEs served by the FlyBSs and in the number of handovers
performed by FlyBSs by up to 23% and 25%, respectively, if
eight FlyBSs are deployed. Besides, the fast convergence of
the proposed algorithm allows its practical application.

Future research should be focused on joint handover deci-
sion for the FlyBSs and UEs and the FlyBS positioning.
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