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Abstract—Flying base stations (FlyBSs) mounted on unmanned
aerial vehicles (UAVs) are widely used in mobile networks to
improve a coverage and/or quality of service for users. To ensure
a seamless mobility of the FlyBSs among the static base stations
(SBSs), an efficient handover mechanism is required. In this
paper, we develop a novel handover mechanism determining the
serving SBS for the FlyBS in order to increase the sum capacity
of the users served by the FlyBS. We propose to dynamically
optimize the handover by adjusting the cell individual offset of
the SBS via Q-learning. The results show that the Q-learning
converges promptly and the proposed approach increases the
users capacity (by up to 18%) and their satisfaction with required
minimum capacity (by up to 20%) comparing to state-of-the-art
algorithms.

Index Terms—Flying base station, handover, cell individual
offset, reinforcement learning.

I. INTRODUCTION

The FlyBSs, represented by the UAVs carrying a com-
munication hardware, are seen as a suitable solution for the
future mobile networks due to their flexibility in deployment
and high mobility. The FlyBSs are deployed to the mobile
networks to extend the network coverage or to boost service
quality in a specific area [1]. As the FlyBSs can be deployed
promptly, they are suitable for emergency situations or short-
lasting events [2]. However, an integration of the FlyBSs to
the mobile networks introduces new challenges.

In [3], the authors study the optimum altitude of the FlyBS
by focusing on the reliability metrics in terms of power loss,
outage probability, and bit error rate. An end-to-end capacity
maximization via the optimal positioning of the FlyBS serv-
ing a single ground user is investigated in [4]. The outage
probability of the half-duplex relaying in the network with the
FlyBSs is minimized by optimizing the FlyBS trajectory and
power allocation in [5]. In [6], the trajectory of the FlyBS and
an allocation of the time for reception and forwarding of data
are jointly optimized to maximize an efficiency in terms of
an energy and a spectrum usage. In [7], the authors consider
joint bandwidth and energy allocation for data gathering by
the FlyBS to maximize the total data rate.

This work has been supported by Grant No. P102-18-27023S funded by
Czech Science Foundation and by the grant of Czech Technical University in
Prague No. SGS20/169/OHK3/3T/13..

Another challenge is related to ensuring a seamless mobility
of the FlyBSs among the static base stations (SBSs). The
FlyBS moves over time and their trajectory is arbitrary and
hard to be predicted, as it is closely related to the movement of
the user equipments (UEs) served by the FlyBS. The arbitrary
trajectory together also with potentially high velocity of the
FlyBS lead to rapid changes in the quality of channels between
the FlyBS and the served UEs as well as between the FlyBS
and the SBS that provides connectivity of the FlyBS to the
network. These changes in the channel quality can result in
performing handovers of the FlyBSs among the SBSs in an
improper time and, consequently, to a handover failure and/or
packet losses. Therefore, an efficient handover mechanism is
required to provide a reliable communication of the UEs with
the SBSs through the FlyBSs.

In conventional mobile networks, the handover of the UE
between the SBSs is commonly initiated when a target SBS
(i.e., the base station to which the handover should be per-
formed) provides a channel of a higher quality than the current
serving SBS. To avoid frequent handovers and/or handover
failures, the decision on the handover initiation is tuned via
control parameters, such as, a hysteresis, a time-to-trigger
(TTT), or various offsets including cell individual offset (CIO)
(please refer, for example, to [8] for more details). Thus, the
handover usually takes place when the target SBS provides
a channel quality that is higher than the channel quality of
the serving SBS by the hysteresis and/or the offset(s) for a
duration of the TTT.

In the conventional mobile networks (without FlyBSs),
the optimization of the hysteresis, TTT, and the offsets is
heavily addressed. For example, in [9], the authors propose
an adaptation of the hysteresis according to relative qualities
of the channels from the serving and neighboring SBSs. This
approach reduces the number of handovers; however, it does
not improve UEs’ throughput. In [10] and [11], the authors
propose to adapt the hysteresis via a fuzzy logic to minimize
the number of performed handovers. However, the impact of
the handover on the throughput of the UEs is not considered.

A reactive load balancing algorithm based on reinforcement
learning is developed in [12]. The reactive algorithm is based
on an adaptation CIO. The CIO is a cell-specific handover
control parameter enabling to control cell association and to
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regulate cell coverage. The CIO is usually given positive or
negative values; the CIO of the overloaded cell is reduced and
that of the most eligible neighboring cell is increased. The
authors suggest to adjust the CIO of serving and neighboring
base stations by a specific step value so that the offset for the
serving and neighboring base stations is of the same value,
but opposite sign. The algorithm assumes that reinforcement
learning states are defined based on a known distribution of
the cell-edge users. However, such information is typically
unknown to a network operator in practical scenarios. In [13],
the authors present a deep reinforcement learning framework
that adjusts the CIO of the base stations to balance the traffic
among the base stations and to optimize the throughput of
the network. This approach leads to an enhancement in the
total throughput compared with the system with no CIO
employment; however, the algorithm assumes only stationary
UEs. In [14], a handover based on a reinforcement learning
is proposed to maximize the received signal quality at the
UEs represented by the UAVs while minimizing the number
of handovers of these UEs. Despite the encouraging results,
the framework adopted in [14] assumes the scenario with
predefined and a priory known trajectory of the UAV. This
assumption is, however, not valid in the scenario with the
FlyBSs serving moving UEs as the trajectory of the FlyBSs
is unknown. Handover management for the UAV acting as the
UE via a dynamic adjustment of the SBSs’ antenna tilt angles
is outlined in [15]. The authors demonstrate that an intelligent
antenna tilting reduces the handover rate for a simple mobility
scenario with the UAV traveling along a linear trajectory.

None of the prior works [9] – [15] study the problem of the
handover optimization for the FlyBSs serving mobile users,
i.e., with unpredictable trajectory.

In this paper, we address the problem of the handover of the
FlyBSs among the SBSs in a realistic and practical scenario
with overloaded SBSs that are not able to serve all UEs. Thus,
some UEs, which cannot be served by the overloaded SBSs,
are served by the FlyBS. The FlyBS provides on-demand
coverage in a relatively short-term peak traffic periods to the
UEs that cannot be served by the SBS. The FlyBS follows
the UEs movement and, hence, performs handover among the
SBSs in order to provide a sufficient quality of the commu-
nication to the served UEs. We propose a framework for a
setting of CIO for the individual SBSs to improve the handover
decisions for the FlyBSs and, consequently, to improve the
communication quality of the UEs not served by the SBSs.
Mobility of FlyBS with unpredictable flying trajectory based
on the UEs’ movement has not been considered in most recent
research contributions, which mainly focus on mobility of
FlyBS with prior known trajectory or mobility of UEs while
FlyBS remains static. Due to the dynamic properties of the
network environment, such a complex problem requires the
solution which is adaptive to the changes in the environment.
Thus we suggest to solve the problem via reinforcement
learning. Particularly, we employ the Q-learning to learn a
proper setting of the CIO values for individual SBS according
to the load of these SBSs. The CIO adjustment decisions are

Fig. 1. System model with multiple SBSs serving UEs and one FlyBS serving
the UEs that cannot be served by the SBSs, as the SBSs are overloaded.

dynamically optimized using Q-learning to provide an efficient
mobility support in the sky.The proposed solution leads to an
increase in the UEs’ capacity and to an increase in the ratio
of the UEs satisfied with their experienced communication
capacity. To our knowledge, it is a first attempt to optimize
handover of the moving FlyBS by adjusting handover offsets
and using reinforcement learning-based approach.

The rest of this paper is organized as follows. Section II
presents the system model and defines the problem addressed
in this paper. Then, in Section III, we present our proposed
Q-learning-based determination of the offsets of the SBSs
for optimization of the FlyBS’s handover via Q-learning. The
simulation results and their discussion are provided in Section
IV. Section V concludes the paper.

II. SYSTEM MODEL

In this section, we first outline the model of the system
considered in this paper. Then, we formulate the targeted
problem.

A. System model

We consider a cellular mobile network consisting of a
set of M SBSs M={m1,m2, ...,mM}, a set of N UEs
N={n1, n2, ..., nN} and one FlyBS, as shown in Figure 1. All
UEs in the system require a certain communication capacity
creq. For a clarity of the following explanations, we assume
the same creq for all UEs. However, our proposed solution
is suitable for any, even diverse creq for individual UEs. Out
of N UEs, Nu UEs cannot receive creq from the SBSs (e.g.,
due to a high load of the SBSs). These Nu UEs are denoted
as uncovered UEs and these are connected to the network via
the FlyBS, which relays the communication from the adjacent
SBS and the uncovered UEs.

The position of the n-th UE changes over time and is de-
fined by Cartesian coordinates {xn(t), yn(t), zn}. The FlyBS
follows the uncovered UEs and the coordinates of the FlyBS
at time t are denoted as {xf (t), yf (t), zf}. Like in [16], [17],
the position of the FlyBS is defined as a center of gravity
of all UEs associated to the FlyBS. Note that the proposed
solution does not depend on the position of the FlyBS and
can be applied on any other approach for the determination of
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the FlyBS position. The location of the SBS does not change
over time and is denoted by {xm, ym, zm}.

In our model, we consider the downlink communication
from the SBS to the UEs either directly or via the FlyBS.
The signal to interference plus noise ratio (SINR) at the n-th
UE served by the FlyBS is:

γf,n =
Pfhf,n∑

m∈MMM Pmhm,n + σ2
(1)

where Pf is the transmission power of the FlyBS, Pm is
the transmission power of the SBS, hf,n stands for the
channel gain between the FlyBS and the n-th UE, the term∑
m∈MMM Pfhm,n represents the co-channel interference from

other SBSs, hm,n stands for the channel gain between the m-
th SBS and the n-th UE, and σ2 is the power of additive white
Gaussian noise (AWGN) at the receiver.

Similarly, the SINR at the FlyBS receiving data from the
m-th serving SBS is expressed as:

γm,f =
Pmhm,f∑

l∈MMM,l 6=m Pmhl,f + σ2
(2)

where hm,f is the channel gain between the m-th serving SBS
and the FlyBS,

∑
l∈MMM,l 6=m Pmhl,f represents the interference

from other SBSs, and hl,f is the channel gain between the l-th
interfering SBS and the FlyBS.

We adopt a decode-and-forward (DF) relaying for the
communication of the UEs via the FlyBS. The relay channel
capacity of the DF system for the n-th user is defined as
Cn = Bn

2 min{log2(1 + γm,f ), log2(1 + γf,n)} [18], where
Bn denotes the bandwidth of the n-th UE’s channel.

The m-th SBS serves a set of the UEs that generate a certain
load ρm to this SBS. The load is defined as the ratio of the
utilized bandwidth of the m-th SBS to serve the associated
UEs versus the total amount of bandwidth available for the
given m-th SBS, i.e.,:

ρm =

∑
n∈NNN βm,nBn

Bm
(3)

where the binary parameter βm,n ∈ {0, 1} indicates if the n-th
UE is associated to the m-th SBS (for βm,n = 1), or not (for
βm,n = 0), Bm is the total bandwidth available for the m-th
SBS.

As the FlyBS follows the moving users, handovers of
the FlyBS among the SBSs are performed during the flight.
Throughout the flight, the FlyBS measures the channel quality
from all neighboring SBSs and periodically sends the mea-
surement reports to the serving SBS in a similar way as the
common UEs report their channel quality in the common
mobile network. Based on the measurement results, the serving
SBS decides to transfer the FlyBS to one of the neighboring
SBSs if a higher signal quality can be reached. We consider
the handover mechanism based on the A3 event [8] that
involves the hysteresis, TTT, and CIO with the channel quality
represented by the received signal strength (RSS) between the
m-th SBS and the FlyBS expressed as RSSm,f = Pmhm,f .

The handover from the serving SBS of the FlyBS to the
neighboring SBS is triggered according to the A3 event if:

RSSj,f + CIOj −Hys > RSSm,f + CIOm (4)

where RSSj,f denotes the RSS between the neighboring SBS
and the FlyBS. CIOj and CIOm correspond to the CIOs of
the neighboring and serving SBSs, respectively. Hys is the
hysteresis value parameter in dB. The A3 event is triggered if
and only if the condition (4) holds for a period of time that
exceeds the TTT.

B. Problem formulation

In this paper, we focus on the handover of the moving FlyBS
among the SBSs. At each decision time t, we determine which
SBS should serve the FlyBS based on the available network
resources. The objective is to optimize the decision on the
handover by adjusting CIO of the SBSs CIOCIOCIO∗ so that the
total capacity of the UEs served by the FlyBS is maximized.
Thus, our objective is defined as:

CIOCIOCIO∗ =argmax
CIOCIOCIO∗∈O

∑
n∈NNNu

Cn (5)

subject to
∑
m∈MMM

βm,n = 1, ∀n ∈NNN, (5a)∑
m∈MMM

βm,f = 1, (5b)∑
n∈NNN

βm,nBn 6 Bm, ∀m ∈MMM. (5c)

where O=〈CIOmin, CIOmax〉 defines the bound over the
CIO values and CIOmin and CIOmax are the minimum and
maximum possible CIO values in the system, respectively.
The binary parameter βm,f ∈ {0, 1} indicates if the FlyBS
is associated to the m-th SBS (for βm,f = 1), or not (for βm,f
= 0). The constraint (5a) ensures that each UE is associated to
just one SBS and the constraint (5b) ensures that the FlyBS
is associated to just one SBS. Furthermore, the constraint (5c)
guarantees that the SBSs do not allocate more bandwidth than
available.

III. PROPOSED CIO ADJUSTMENT BASED ON Q-LEARNING

An efficient solution to the optimization problem in (5) re-
quires a prior knowledge of the network environment, e.g., the
communication channel capacity due to unpredictable flying
trajectory of FlyBS (dependent on the UEs’ movement). How-
ever, such knowledge is not always available, and a significant
amount of information should be exchanged to obtain at least a
part of the required knowledge. Thus, a model-free deployment
approach is required to solve this problem. We suggest to solve
the problem via the reinforcement learning. The reinforce-
ment learning-based method learns directly from observed
experiences without a model, where a model represents the
network environment’s dynamics. In this section, we address
the handover optimization problem with the reinforcement
learning and we introduce a novel CIO adjustment scheme. We
propose the Q-learning-based algorithm to obtain the optimal
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CIO adjustment policy for the serving as well as target SBSs.
In our proposal, each SBS considers only its individual traffic
load for the CIO adjustment, and no information from the
neighboring SBSs is required in order to avoid an additional
overhead.

A. Preliminaries on Reinforcement Learning

The reinforcement learning is formulated as the triple
(S,A, r), where S and A denote the sets of all possible states
and actions, respectively, and r is the reward function [19]. The
reinforcement learning agent aims at selecting a sequence of
the optimal actions under different system states. Assuming π
is a policy of choosing the actions, the action-value function
Qπ(s, a) for every state-action pair indicates how good is the
action performed in that state. We use a well-known model-
free reinforcement learning algorithm known as Q-learning.
Thus, the action-value function Q(s, a) is iteratively updated
and preserved in a lookup table of the Q-values corresponding
to each state-action pair. If the agent performs the action in the
state st at the time t, it receives an immediate reward rt and
the system transits to the state st+1. The Q-values are updated
based on the interaction with the environment according to:

Q(st, at)← Q(st, at)+α[ rt+λmaxQ(st+1, a)−Q(st, at)] ,
(6)

where α ∈ (0, 1] is the learning rate that balances new
information against previous knowledge, λ ∈ (0, 1) is the
discount factor that balances between the immediate and future
rewards, and rt is the reward received when moving from the
state st to the state st+1.

Q-learning training process consists of multiple iterations,
each with a number of steps µ. We adopt the ε-greedy policy,
where the agent tries to obtain the highest reward at each
training step, while also checks for other actions, which can
improve the estimated future reward. The primary concept of
ε-greedy policy is to pick a random number from [0; 1] and
compare it with ε. If the chosen number is smaller than ε,
the agent explores the state-action space by taking a random
action; otherwise, the agent exploits the learned information
and picks an optimal action with the highest Q-value. The
learning starts with ε = 1, then, ε is reduced to ε = 0 by
multiplying a decay factor η = 0.99 at each learning step [15]
to end up with the optimal policy.

B. Q-learning for CIO adjustment

The objective defined in (5) is interpreted as the problem,
where the agent maximizes its final cumulative rewards by
interacting with an unknown environment over time. For our
problem, each SBS can be considered as an agent; however,
this can lead to an additional overhead due to information
exchange directly among all SBSs. The FlyBS can also act
as the agent for our purposes. Nevertheless, the FlyBS is
usually constrained with a limited energy and any additional
energy consumption is not welcome. Thus, we assume that
the network is equipped with a central agent, e.g., in an edge
server or a (software) entity in the operator’s core network, that

Algorithm 1 Q-learning for FlyBS handover optimization
1: Input: number of SBSs, SBS load, action set (possible

CIO values)
2: Initialize Q(s, a) and S(1)
3: for each learning step t do
4: observe current state S(t) of the SBSs
5: choose action using ε-greedy policy
6: execute action A(t) and update CIO values for the

SBSs
7: calculate r(t) using (7)
8: calculate the action, which maximizes Q-value in the

next state and update Q-table using (6)
9: S(t)← S(t+ 1)

10: end for
11: Output: Q-table

can monitor the load of the SBSs and implement Q-learning.
Note that the proposed solution does not depend on the agent
representation.

Now, let’s define the state and action sets, and the reward
function for our targeted problem. The detailed learning con-
text is represented as follows. To formalize the Q-learning
problem, the state of the network is represented by the
load of the SBSs. Thus, the set of states S(t) is defined
as S(t) = [ ρ1(t), ρ2(t), . . . , ρm(t)] , where ρm(t) ∈ [0, 1]
and corresponds to the load of the m-th SBS at the time
t. The action is understood as a selection of the CIO for
each SBS. Thus, the central agent determines the CIOs
for the SBSs via a selection of suitable actions A(t) =
[CIO1(t), CIO2(t), . . . , CIOm(t)], where the CIOm(t) cor-
responds to the CIO of the m-th SBS at the time t. Considering
the problem formulation targeting the maximization of the
total capacity of the UEs served by the FlyBS (see (5)), the
reward function at the time t, r(t) ∈ 〈0, 1〉, is defined:

r(t) =

∑
n∈NNNu

Cn(t)

Nucreq
, (7)

where Cn(t) is the channel capacity of the n-th UE served
by the FlyBS at the time t. The pseudo-code of the proposed
Q-learning process is presented in Algorithm 1. In step 2, the
Q-table is initiated with random values from interval (0; 1).
The Q-value iterations for each training step are performed in
steps 2-9. Based on the current state S(t), ε-greedy policy is
performed in step 5 to choose either the random or optimal
action. In step 6, the chosen action is executed. The reward
is calculated in step 7. Finally, in step 8, values for selecting
different actions are stored in the Q-table, where the highest
value represents the optimal choice.

IV. PERFORMANCE EVALUATION

In this section, we evaluate the performance of our proposed
Q-learning-based handover optimization via simulations in
MATLAB. Note that the proposed solution does not depend
on the transmission power of base stations and the size of
cells. Thus, we consider the mobile network containing three
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TABLE I
SIMULATION PARAMETERS

Parameter Value
Simulation area 1000m × 1000m

Carrier frequency 2 GHz
Tx power of SBS/FlyBS 23/23 dBm

Bandwidth of SBS 100 MHz
SBS/FlyBS/UE height 20/80/1.5 m

Number of UEs 125
Number of UEs served by FlyBS 25

Hysteresis margin 3 dB
Time step 1 s

SBSs, with transmission power of 23 dBm, and 125 UEs
deployed in a square area of 1000 m × 1000 m. The SBSs
are placed randomly with a minimum inter-site distance of
500 m. The UEs are also deployed randomly following a
uniform distribution. The UEs served by FlyBS move in a
crowd along the same direction (following the same crowd
movement trajectory), but each UE can move arbitrary along
the crowd trajectory.

The path-loss between the FlyBS and the UEs is modeled
as the air-to-ground (A2G) communication according to [20],
with suburban environment parameters (“suburban” channel
model, i.e., a = 4.88, b = 0.43, ηLoS = 0.1 and ηNLoS =
21, see [21] for more details). A signal propagation for the
SBSs is modeled according to [22] with the path loss model
128.1+37.6log10d, where d (in km) is a distance between the
UE and the SBS. The spectral density of noise is set to -174
dBm/Hz.

We consider 40 random deployments (realizations) and a
duration of each is 200.000 seconds of real-time. Note that the
positions of the UEs, corresponding trajectory of the FlyBS,
and the positions of the SBSs change at each realization. The
results of these realizations are then averaged out. Like in
[12], the CIO of each SBS is selected from the range of -6 to
6 dB. Table I summarizes the major parameters used in our
simulations.

For the Q-learning training purpose, different settings of α
and λ have been tested and we have observed that α = 0.8
and λ = 0.6 are the most suitable for the proposed algorithm.

The performance of the proposed Q-learning algorithm is
compared with three commonly exploited baseline approaches:
i) handover without CIO, i.e., with CIO set to 0 dB for all
SBSs (denoted as No CIO in figures); ii) the algorithm in
[23], denoted as Fixed step CIO, which adjusts the CIO by
adding or subtracting a fixed step when the difference in the
load between neighboring base stations exceeds a threshold;
and iii) the CIO adjustment algorithm from [24], denoted as
Adaptive CIO, which sets CIO according to the predefined
relation between the value of CIO and the average load of the
SBSs. We also show performance for the case without FlyBS
integration (denoted as No FlyBS in figures), i.e., all UEs are
served only by SBSs.

We consider two performance indicators for the evaluation:
i) the sum capacity of the UEs served by the FlyBS defined
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as
∑
n∈NNNu

Cn(t) ; ii) the UEs’ satisfaction ratio, i.e., the ratio
of the UEs for which Cn ≥ creq, n ∈NNNu.

Figure 2 shows the total capacity of the UEs served by the
FlyBS for various creq. The capacity is raising with creq up to
creq = 15 Mbps. Then, for creq higher than 15 Mbps the total
capacity starts decreasing. The decrease in the total capacity
of the UEs with increasing of creq is because the overloaded
SBSs cannot provide all UEs with the resources required to
meet creq . The proposed algorithm increases the capacity by
up to 18%, 11%, and 10% comparing to the No CIO, the Fixed
step CIO and the Adaptive CIO algorithms, respectively. Note
that the increase in the capacity by the proposed algorithm
is more notable for the cases, when the system suffers from
resource shortage. This improvement is because the proposed
CIO adjustment algorithm considers the SBS’ load and learns
the most suitable CIO values for each state of the SBSs’ loads.
The significant decrease in the total capacity of UEs for the
No FlyBS case is because, not all UEs can be served by SBSs.

Figure 3 depicts the gain achieved by the proposal in the
total capacity of UEs served by FlyBS with respect to the No
CIO and to the Adaptive CIO algorithms. The figure illustrates
the learning progress of the proposal after individual learning
events, i.e., after each handover performed by the FlyBS. At
the beginning of the learning (up to roughly 17 handovers) the
gain becomes negligible or even slightly negative in some steps
compared to the No CIO (up to -1%) and to the Adaptive CIO
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(up to -7%). This slightly negative gain is a result of the initial
”random” learning when (almost) no information that would
guide the selection of the CIO is available. However, after this
short initial learning phase, i.e., after about first 17 handovers,
the gain becomes always non-negative and increases with
new performed handovers. The capacity gain achieved by the
proposed Q-learning based algorithm converges approximately
after 60 handovers. Moreover, after about 70 handovers, the
gain stabilizes and becomes notably positive ranging typically
from about 10% to 30% and from about 8% to 20% with
respect to the No CIO and Adaptive CIO algorithms, respec-
tively. The figure also illustrates fitting function for the gain
with respect to the No CIO and Adaptive CIO algorithms.
The fitting function demonstrates that the proposed algorithm
outperforms the No CIO and the Adaptive CIO in the sum
capacity of UEs by 19% and 11%, respectively, after 90
handovers performed by the FlyBSs. Requiring only tens of
handovers to learn the suitable values of CIO is sufficiently
fast to deploy the proposed algorithm in real networks.

In Figure 4, we show the satisfaction of the UEs served by
FlyBS with the received capacity, i.e., the ratio of the UEs that
receive at least creq . For all compared algorithms, the UEs’
satisfaction level is decreasing with an increasing creq . The
reason for the decrease in the satisfaction is the fact that the
total capacity required by all UEs in the network increases with
creq , while the amount of bandwidth available to the SBSs and
the FlyBS remains the same. Due to the resources shortage,
the overloaded SBSs are not able to assigning the required
bandwidth to all UEs and less UEs achieves creq . For very
low requires capacity (creq = 5 Mbps), all UEs are satisfied
disregarding the CIO setting, as there are enough resources in
the system to satisfy all UEs. However, as creq increases, the
satisfaction starts decreasing. The decrease in the satisfaction
is more notable for all competitive algorithms than for the
proposed algorithm. The proposed algorithm leads to a an
improvement in the satisfaction of about 11%, 8%, and 7%
percent-points with respect to the No CIO, Fixed step CIO, and
Adaptive CIO algorithms, respectively. This corresponds to an
increase in the UEs’ satisfaction ratio by 20%, 16%, and 14%
comparing to the satisfaction ratio achieved by the No CIO,
Fixed step CIO, and Adaptive CIO algorithms, respectively.
The improvement in the UEs’ satisfaction is achieved by the
adjustment of CIO dynamically according to the load of SBSs
so that the FlyBS is associated to the SBS that offers required
communication capacity to the FlyBS for a longer time.

V. CONCLUSION

In this paper, we have proposed a novel algorithm based on
Q-learning managing handover of the FlyBS among the SBSs
to maximize the total capacity of the UEs served by the FlyBS.
The proposed algorithm adjusts CIO values according to the
load of SBSs. The states of the Q-learning agent are described
in terms of the load of the SBSs and the reward function is
defined in terms of the capacity of UEs served by the FlyBS.
The results show an enhancement in the UEs’ capacity by
up to 18% and by 20% in the level of the UEs’ satisfaction
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with respect to state-of-the-art solutions. We also demonstrate
that the Q-learning process converges quickly and only tens
of handovers are required to reach a significant gain.

Future extensions should target extension towards multiple
FlyBSs. In addition, the work should be also extended towards
joint handover decision and the FlyBS positioning.
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