
IEEE SYSTEMS JOURNAL 1

Dynamic Clustering for Low-Delay Delivery of
Video Content Cached in MEC Servers

Ali Doostmohammadi , Mohammad Reza Khayyambashi , Naser Movahedinia , Member, IEEE,
and Zdenek Becvar , Senior Member, IEEE

Abstract—For the purpose of video caching and low-delay video
delivery to the end-users, multiaccess edge computing (MEC)
servers are commonly grouped into clusters to efficiently exploit the
limited storage resources of the MEC servers. In this article, we first
introduce a methodology for analysis of the video delivery delay
using the queuing theory. Our analysis shows that the video delivery
delay is mainly affected by the arrival rate of the video requests.
Furthermore, we show a tradeoff between the ratio of videos found
in the MEC servers within the same cluster and the transmission
delay of video contents. To reduce the video delivery delay, we
propose a dynamic MEC server clustering (DyMECC) algorithm
that determines the cluster size at each time interval by solving
analytically derived equations considering the actual arrival rate
of video requests. It also acts as a congestion avoidance mechanism
for the communication interfaces among the MEC servers. Via
simulations, we show that the DyMECC reduces the video delivery
delay about 15% in light load conditions and by more than five
times in heavy load conditions compared to state-of-the-art works
while also reduces the load of the communication interfaces among
the MEC servers by more than 45%.

Index Terms—6G, clustering, cooperative caching, multiaccess
edge computing (MEC), video, Xn interface.

I. INTRODUCTION

ACCORDING to the Ericsson mobility report [1], the traffic
in mobile networks should be 110 exabytes per month by

2023. Out of this volume of data, 45% belongs to video [2],
[3]. Future mobile networks should deal with this tremendous
video traffic. Although 6G visions promise high bit rates and
ultra-low latency [4], [5], there is a huge difference between the
transmission delay of video contents in 6G radio access network
and the delay of fetching the videos from the original content

Manuscript received 27 October 2022; revised 13 April 2023; accepted 28
May 2023. This work was supported in part by the Ministry of Education,
Youth and Sport of the Czech Republic under Grant LTT20004, and in part by
Czech Technical University in Prague under Grant SGS20/169/OHK3/3 T/13.
(Corresponding author: Mohammad Reza Khayyambashi.)

Ali Doostmohammadi is with the Department of Computer Architec-
ture, Faculty of Computer Engineering, University of Isfahan, Isfahan
73441, Iran, and also with the Faculty of Electrical Engineering, Czech
Technical University in Prague, Prague 73441, Czech Republic (e-mail:
a.doostmohammadi@eng.ui.ac.ir).

Mohammad Reza Khayyambashi and Naser Movahedinia are with the Depart-
ment of Computer Architecture, Faculty of Computer Engineering, University
of Isfahan, Isfahan 81746, Iran (e-mail: M.R.Khayyambashi@comp.ui.ac.ir;
naserm@eng.ui.ac.ir).

Zdenek Becvar is with the Faculty of Electrical Engineering, Czech
Technical University in Prague, Prague 16627, Czech Republic (e-mail:
zdenek.becvar@fel.cvut.cz).

Digital Object Identifier 10.1109/JSYST.2023.3283965

providers via a core network and the Internet [6]. A low-delay
video delivery can be facilitated by MEC servers that provide the
storage resources for caching the popular video contents close
to the users, i.e., at the edge of the mobile network. Thus, MEC-
assisted video content delivery has been recently a dominant
paradigm toward reducing the video delivery delay, as shown,
e.g., in [7], [8], [9], and [10]. Caching the video contents at the
storage of MEC servers not only reduces the content delivery
delay, but also reduces the backhaul traffic load via not fetching
the video contents from the far-away servers of the original video
content provider [11], [12].

To further improve caching performance at the edges, video
conversion and recommendation have been introduced. These
techniques work to produce lower quality versions of videos or
provide alternative similar videos when requested videos are
not available [13], [14]. In [15], an efficient algorithm was
introduced to jointly utilize the video conversion and video
recommendation for reducing the video delivery delay.

As the quality of videos (e.g., resolution, video bit rate, mul-
tiview 3-D videos) increases over time, more storage resources
are required in the MEC servers to keep the video contents
close to the users and to reduce the video delivery delay as
well as the backhaul load. To this end, an effective caching
mechanism with an adaptive view selection is introduced in [16].
In [17], a MEC-assisted caching of multiview 3-D video with
a dynamic view angle selection was introduced to reduce the
required storage requirements by real-time synthesizing of the
desired views. The authors presented a novel cache management
problem called Adaptive View Selection and Cache Operation,
and derive an optimal policy using the Markov decision process.
Nevertheless, these works assume just single MEC server as a
caching proxy; hence, a large storage space is still needed.

To avoid an increase in the cost of storage in the MEC
servers, collaborative caching is adopted in [13], [18], and [19].
In the cooperative caching, several neighbouring base stations
(BS) collocated with MEC servers share their cached contents.
In [18], cache-enabled vehicles cooperated with base stations
on sharing of the cached content. This idea was further evolved
to a digital twin empowered content caching in vehicular
edge networks in [20]. In hierarchical ultradense networks,
the cooperative caching can be extended to the cooperation
between micro BSs and macro BSs as well. For example, a
collaborative caching scheme for virtual reality (VR) video
delivery in MEC-enabled small-cell networks was proposed
in [21] aiming to obtain low-delay VR video delivery.

One drawback of the cooperative caching is an existence of
the duplicate video contents in adjacent MEC servers leading

1937-9234 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: CZECH TECHNICAL UNIVERSITY. Downloaded on September 14,2023 at 08:39:08 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-2854-9439
https://orcid.org/0000-0002-5204-1328
https://orcid.org/0000-0002-6645-3518
https://orcid.org/0000-0001-5155-8192
mailto:a.doostmohammadi@eng.ui.ac.ir
mailto:M.R.Khayyambashi@comp.ui.ac.ir
mailto:naserm@eng.ui.ac.ir
mailto:zdenek.becvar@fel.cvut.cz

2 IEEE SYSTEMS JOURNAL

to redundancy in video contents and inefficient usage of the
caching resources in the MEC server [22]. To limit the redun-
dancy and consequent requirements on over-dimensioning of
the storage resources in the MEC servers, the MEC servers
can be grouped into clusters as indicated in [22] and [23]. The
MEC server clustering can be classified into two categories: 1)
user-centric clustering: where the user accesses the BS via radio
interface and receives the content directly from the accessed
BS, as introduced, e.g., in [24], [25], [26], and [27]; and 2)
interconnection-based clustering: where the MEC servers col-
located with the BSs are grouped together to construct a coherent
entity in terms of caching and the user accesses the serving BS,
which requests the content from other BSs in the cluster via
interfaces [22], [23], [28].

In the user-centric clustering of the MEC servers, the com-
munication range of the users and the BSs limits the size of
the cluster. In contrast, the interconnection-based clustering
expands the domain of the cooperating MEC servers to a further
distance in which the video contents can be exchanged through
the interconnected MEC servers. Thus, in this article, we focus
on the interconnection-based clustering and the communication
interface between the MEC servers can be of any kind. We use
Xn interface throughout the article as it is commonly used in 5G
and beyond mobile networks.

A direct connection of the BSs via X2 interface for the purpose
of the cooperative caching is introduced in [22], where the MEC
servers were connected to each other to form a cluster. the
clusters are fixed during the network setup and do not change
during the system operation even if the rate of video requests
varies over time. In [23], the MEC servers were connected to
each other and logically grouped into the clusters based on the
user density distribution and the geographical location of MEC
servers. The authors introduced a collaborative caching splitting
the storage resource of the MEC servers into local, intracluster,
and intranetwork partitions aimed to minimize the average delay
of content delivery. Nevertheless, the collaborative caching is
not designed to operate in a heterogeneous and dynamic envi-
ronment, and like in the previous work, the clustering scheme
does not change over time. Moreover, the rate of the users’
requests is not taken into account in the calculation of content
delivery delay. In [28], the moving users were classified into
different groups based on their velocity. Then, different MEC
server clustering was defined for each user group to minimize the
end-to-end delay of network services. Although a kind of MEC
server clustering is introduced in this article, the authors focus
on the reduction of the virtualized network functions migration
among clusters and the dynamic nature of user demands is not
considered.

Besides the abovementioned works on the fixed clustering of
MEC servers, some papers target also dynamic video delivery
path. For example, a dynamic routing for transmitting the videos
among the interconnected MEC servers was proposed in [29] to
offload the backhaul traffic to X2 interfaces. From the applica-
tion focus perspective, this work focuses on cooperative caching
and traffic offloading for video streaming services. From the
technology approach perspective, this work proposes the use of
content centric network and software defined network (SDN)
to optimize network resource utilization. Besides this work
does not consider the real-time dynamics of user requirements
when optimizing network resource utilization, which could

limit its effectiveness in scenarios with highly dynamic user
requirements.

Also, an online caching policy was proposed for reducing
the content delivery delay in content delivery networks in [30].
Although this algorithm is proven to be effective in the envi-
ronments where popularity is highly dynamic, our proposed
work differs from [30] in addressing dynamic aspects, since our
proposal focuses on the dynamic nature of video request arrival
rate, while [30] focused on the dynamic nature of the popularity
of the multimedia data. Consequently, problem formulations as
well as solutions in our manuscript and [30] are completely
different.

In this article, we first analyze the video delivery delay using
the queuing theory and, then, we propose the algorithm that
dynamically adjusts the cluster size according to the arrival rate
of video requests to minimize the video delivery delay. Our
major contributions are summarized as follows.

1) We introduce an analytical framework for modeling the
video delivery delay using the queueing theory. We take
not only the waiting times into account, but also the
variations in the service rate of the clusters, the arrival
rate of video requests, and the cluster size.

2) We analyze the tradeoff between the probability of finding
the video content in the cluster and the delivery delay of
the video content within the cluster to obtain the cluster
size that minimizes the video delivery delay.

3) We propose a dynamic MEC server clustering framework
to minimize the video delivery delay in the presence of the
variable arrival rate of video requests. The cluster size is
determined based on the observed arrival rate of the video
requests in each time interval to efficiently utilize the Xn
interfaces.

4) We demonstrate that the proposed algorithm significantly
reduces the video delivery delay, even more than five times
in heavy load conditions, compared to state-of-the-art
works. At the same time, the load of the communication
interfaces among the MEC servers is reduced notably, by
more than 45%, by the proposal.

The rest of this article is organized as follows. The system
model is described in Section II. The analytical model for the
video delivery delay and the tradeoff analysis is introduced in
Section III. Then, Section IV presents the formulation of the
optimization problem. Our proposed DyMECC is outlined in
Section V. Section VI provides the performance evaluation.
Finally, Section VII concludes the article.

II. SYSTEM MODEL

In this section, we outline system model for the delivery of
video content to users. Note that the notations used throughout
this article are summarized in Table I.

We assume that M, U, V are the set of MEC servers, the set
of users, and the set of videos, respectively. Each MEC server is
collocated with one BS and each BS (and thus, each MEC server)
is connected to the core network via the backhaul. Besides, each
BS can directly communicate with its neighbors via Xn interface
as illustrated in Fig. 1.

The MEC server m has a storage capacity of Cm. For each
MEC server, a binary variable Δm,v shows if the vth video is
cached in the mth MEC server (Δm,v = 1) or not (Δm,v = 0).

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: CZECH TECHNICAL UNIVERSITY. Downloaded on September 14,2023 at 08:39:08 UTC from IEEE Xplore. Restrictions apply.

DOOSTMOHAMMADI et al.: DYNAMIC CLUSTERING FOR LOW-DELAY DELIVERY OF VIDEO CONTENT CACHED IN MEC SERVERS 3

Fig. 1. System model for the delivery of video content to the users. DXn is applied when one MEC server transfers the video content to one of its neighboring
MEC server and is a function of the video size and the capacity of Xn interface, whereas DK is the delay of transmitting the video content between two arbitrary
MEC servers within the cluster and is a function of the cluster size. In fact, Dk is applied when the requested video is delivered by the MEC server within the
cluster k. Db is applied when the requested video is not found in the cluster k and is fetched from the original media server. Dm,u is always applied because the
serving MEC server is the one that transmits the requested video to the user u.

TABLE I
NOTATION OF VARIABLES AND PARAMETERS USED IN THE MODEL

The distribution of video popularity commonly follows Zipf
distribution, as shown, e.g., in [31], so the video v is requested
by the user u with the probability of

ρν,u =

⎛
⎝νγ

|V|∑
n=1

n−γ

⎞
⎠

−1

(1)

where γ is the Zipf parameter indicating the popularity
skewness.

When the MEC server m receives a request for the video v
from the user u, the following three different cases may occur.

1) Local cache-hit: the MEC server m checks its cache. If
the video v is found in its cache with the probability of
αm,v, the MEC server m sends the requested video to
the user directly via collocated BS. In this case, the edge

transmission delay Dm,u equals to the video transmission
delay from the serving BS collocated with the MEC server
m to the user u.

2) Cluster-hit: If the requested video is not found in the
cache of the MEC server m, the MEC server m requests
the video from other MEC servers in the same cluster
k (i.e., the cluster to which the MEC server m belongs
to). If one of the MEC servers within the cluster k finds
the requested video in its cache, the video is sent to the
MEC server m via the Xn interface connecting the MEC
servers to each other. In this case, the intracluster delayDk

includes the video transmission delay between the MEC
servers within the cluster.

3) Fetching from the original media server: If the requested
video is not found in the cluster, the MEC serverm fetches
the requested video from the original media server via
backhaul and evolved packet core network. In this case, the
video delivery delay from the original media server to the
MEC server m is represented by the backhaul delay Db.

The cluster-hit probability is calculated based on the lo-
cal cache-hit probability of individual members of the cluster.
Precisely, the cluster-hit probability is the complement of the
probability of not finding the requested video in any caches
of the MEC servers within the cluster. Hence, the cluster-hit
probability of finding the video v in the cluster k is defined as

βk,ν = 1−
|Mk |∏
i=1

(1− αi,ν) (2)

where |Mk| is the number of MEC servers in the cluster k.
In this article, we assume a practical and realistic case, where

there are many different video contents in the video library and
the total size of the video library is huge in comparison with the
cache size of MEC servers, i.e.,

∑
v∈V Sv � Cm, ∀m ∈ M ,

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: CZECH TECHNICAL UNIVERSITY. Downloaded on September 14,2023 at 08:39:08 UTC from IEEE Xplore. Restrictions apply.

4 IEEE SYSTEMS JOURNAL

Fig. 2. MEC server as a queue.

where Sv is the size of the video v in the video library V .
Therefore, the local cache-hit probability of all MEC servers are
very low and approximately the same, i.e., αm,v = α, ∀m ∈
M , ∀v ∈ V. Hence, the cluster-hit probability is solely a func-
tion of local cache-hit and the cluster size, i.e.,

βk,ν =
(
1− (1− α)|Mk |

)
. (3)

In conclusion, the system model represents the video content
delivery to the end users through the interconnection network
of MEC servers, taking into account a range of factors such
as the storage capacity, the video size, the interface capacity,
and various transmission delays. By examining different caching
scenarios, including local cache-hits, cluster-hits, and fetching
from the original media server, the model offers a realistic
portrayal of how video requests are handled within a clustered
MEC environment. Additionally, the model integrates the impact
of video popularity based on a Zipf distribution and investigates
the connection between local cache-hit probability, cluster-hit
probability, and the various system parameters. This cooperative
approach to the system model paves the way for a thorough
analysis and evaluation of the proposed DyMECC algorithm,
showcasing its effectiveness in reducing the video delivery delay
compared to the fixed clustering schemes.

III. ANALYTICAL MODEL OF VIDEO DELIVERY DELAY AND

TRADEOFF ANALYSIS

In this section, first, we introduce an analytical model for the
video delivery delay. Then, we investigate the tradeoff between
the cluster-hit ratio and the intracluster delay. We also analyze
the effect of the backhaul delay on the cluster size.

A. Analytical Model

Since the capacity of the Xn interfaces interconnecting the
MEC servers in mobile networks is finite, when the video content
should be transmitted via the Xn interface that is transmitting an-
other video content, the video content enters a queue for that Xn
interface. Therefore, the arrival rate of the video requests affects
the video delivery delay. Higher arrival rate of the video requests
results in the higher queue waiting times and, consequently, a
higher video delivery delay.

Using queuing theory, we model each MEC server as a queue
of the video requests. The video requests arrive in MEC serverm
with the rate λm. When a new video request arrives, it is placed
to the end of the queue (Fig. 2). The service rate μm of MEC
server m is the rate at which MEC server m transmits the video
content to its users Um.

We assume that the interarrival times of video requests and
the service times of MEC servers (i.e., the time taken to transmit
video content) are the Poisson point processes [23]. Therefore,
the average transmission delay Dm of the video requested from

Fig. 3. Cluster of MEC servers as a queue with a variable service rate.

the MEC server m to the user u is derived as

Dm,u =
1

μm − λm
(4)

where λm is the arrival rate of video requests on the MEC server
m, and μm is the rate at which the MEC server m transmits the
video contents to the Um users over the radio resources with the
bandwidthB, hence, the average transmission rate is formulated
as

μm =
1

|Um|
∑
u∈Um

B × log2
PwL−ε

m,u

σ2 + Im
(5)

where Pw is the transmission power, Lm,u is the distance
between the MEC server m and the user u, ε is the path loss
exponent, σ2 is the additive Gaussian noise power density, and
Im denotes the intercell interference.

Based on the model for individual MEC servers, each cluster
of MEC servers is modeled also as a queue with an arrival rate
of λk and with a variable service rate of μk (Fig. 3).

Then, based on the queuing theory, the intracluster video
delivery delay is modeled as

Dk =
1

μk − λk
. (6)

The arrival rate λk of the kth cluster is an aggregation of the
arrival rates of the MEC servers belonging to the kth cluster,
i.e.,

∑
m∈Mk

λm multiplied by the probability of finding the
requested video in the cluster, i.e.,

∑
v∈V ρvβk,v . Thus, the

arrival rate λk is defined as

λk =
∑

m∈Mk

λm ×
∑
v∈V

ρvβk,v. (7)

If we substituteβk,v with its definition in (3) and assuming the
arrival rate of all MEC servers is the same (λm = λ, ∀m ∈ M),
we get

λk = (|Mk| × λ)×
(
1− (1− α)|Mk |

)
. (8)

The service rate μk of the kth cluster is the inverse of the
average transmission time of the video content with the size S
within the cluster, where S is the average size of the videos in
the video library, i.e., S = 1

|V|
∑

ν∈V Sν . The average transmis-
sion delay of the video content between two neighboring MEC
servers directly connected to each other via Xn interface with the
capacity of RXn is DXn = S

RXn
. Let ξk be the average distance

in terms of the number of MEC servers in the video delivery
path between two MEC servers in the cluster k with |Mk| MEC
servers. Then, we have

μk =
1

DXn × ξk
. (9)

Using the delays in the video delivery described above, we
can calculate the overall average video delivery delay perceived
by the users served by the MEC serverm belonging to the cluster

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: CZECH TECHNICAL UNIVERSITY. Downloaded on September 14,2023 at 08:39:08 UTC from IEEE Xplore. Restrictions apply.

DOOSTMOHAMMADI et al.: DYNAMIC CLUSTERING FOR LOW-DELAY DELIVERY OF VIDEO CONTENT CACHED IN MEC SERVERS 5

k as

Dm =
1

|Um||V|
∑
u∈Um

∑
ν∈V

ρv,u[αm,ν .Dm,u

+ (1− αm,ν)βk,v × (Dk +Dm,ν)

+ (1− αm,ν)(1− βk,ν)× (Db +Dm,u)]. (10)

Finally, the weighted average of the video delivery delay on
all |M| MEC servers is the overall average video delivery delay
of the system D defined as

D =
1

λ

|M|∑
m=1

λm ×Dm (11)

where λ =
∑|M|

m=1 λm.
Moreover, we calculate the average local cache-hit ratio φl

and the average cluster-hit ratio φk as follows:

φl =
1

|M|
∑
u∈U

∑
ν∈V

ρv,u ×
∑
m∈M

αm,ν (12)

φk =
1

K

∑
u∈U

∑
ν∈V

ρv,u ×
K∑

k=1

βk,ν . (13)

If αm,ν = α ∀m ∈ M, ∀ν ∈ V ⇒ φl = α, φk ≈ α× |M|.

B. Tradeoff Analysis

According to (2), the probability βk,ν of finding the video v
in the MEC servers’ cluster k, is a function of the cluster size
|Mk|. In other words, if the cluster enlarges, the cached-content
diversity increases and, consequently, βk,ν increases. Hence,
the average cluster-hit ratio increases with the cluster size and,
consequently, the average video delivery delay decreases.

In contrast, as shown in (9), the service rate of the cluster
reduces with an increase in the cluster size |Mk|. Therefore,
if the cluster enlarges, μk decreases and, according to (6), the
intracluster delay Dk increases. As a consequence, the video
delivery delay increases. This indicates a tradeoff between βk,v

and Dk.
There is also a relation between the cluster size |Mk| and

the backhaul delay Db. When the backhaul delay is high due
to a heavy traffic, enlarging the cluster results in more video
requests being responded from the MEC servers at the edge
and a lower number of the video requests is directed to the
origin media server. Therefore, increasing the size of the cluster
not only reduces the backhaul load, but also reduces the video
delivery delay significantly. Nevertheless, we should determine
the cluster size in such a way that the intracluster delay does not
become higher than the backhaul delay.

IV. PROBLEM FORMULATION

In this section, we formulate the optimization problem of
the video delivery delay minimization. Regarding the tradeoffs
discussed in the previous section, the video delivery delay can
be expressed as a function of both the video request arrival
rate and the cluster size. Moreover, the local cache-hit ratio and
the cluster-hit ratio, which significantly influence the delay, are
influenced by two factors: 1) the cache size of the MEC servers;
and 2) the cache placement. As a result, the video delivery delay
is intricately dependent on both the cache size of the MEC

servers and the cache placement. Therefore, the optimization
problem targeted in our article is defined as follows:

minimize
|Mk |,Δm,ν

D(λm,Δm,ν , Cm, |Mk|)

subject to

1 ≤ K ≤ |M| (C1)

K∑
k=1

|Mk| ≤ |M| (C2)

λm ≤ μm ∀m ∈ M (C3)

λk ≤ μk 1 ≤ k ≤ K (C4)

|V|∑
v=1

Δm,ν × Sv ≤ Cm ∀m ∈ M. (C5)

The goal of the optimization problem is to determine the
cluster size(|Mk|) and the cache placement variable (Δm,ν ,m ∈
M, v ∈ V) to minimize the video delivery delay, with the given
arrival rate of video requests (λm, m ∈ M), and storage ca-
pacity constraints (Cm, m ∈ M).

The constraints (C1) and (C2) indicate that all active |M|
MEC servers of the mobile networks are clustered intoK disjoint
groups. (C3) limits that the arrival rate of the video requests in
MEC servers should be lower than their video transmission rate
to prevent the waiting times become infinite. Similarly, (C4)
limits that the aggregate arrival rate of the video requests to
the clusters should be lower than their video delivery service
rate for preventing the system to be overwhelmed. Note that
the aggregated arrival rate is the function of the cluster size and
the video requests arrival rate to the MEC servers of the cluster.
(C5) indicates the limitation of the storage capacity of each
MEC server. As described in Section II, Δm,ν ,m ∈ M, v ∈ V
is a binary variable which shows how the video content is cached
in MEC servers of the system. Choosing video content from
the video library V to be placed in the caches of M MEC
servers to minimize the video delivery delay while meeting
the storage capacity constraints corresponds to the classic bi-
nary knapsack problem. Therefore, this is an NP-hard problem.
Moreover, the cache placement impacts on the cache-hit ratio
and, consequently, the cluster-hit ratio and the service rate of the
cluster, μk.

To make the NP-hard cache placement problem more man-
ageable, we apply a uniform cache placement strategy that
stabilizes the variable Δm,ν . Consequently, the optimization
problem narrows down to finding an optimal cluster size, aiming
to reduce the video delivery delay.

V. PROPOSED DYNAMIC MEC SERVER CLUSTERING

(DYMECC)

In this section, we describe our proposed DyMECC. First,
in Section V-A, we elaborate on the effect of the load of the
video requests on the service rate of the clusters that motivates
the idea of DyMECC in presence of the variable arrival rate of
video requests. Then, we determine the cluster size minimizing
the video delivery delay in Section V-B. Last, Section V-C
summarized the proposed DyMECC algorithm reducing the
video delivery delay via dynamic clustering of the MEC servers.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: CZECH TECHNICAL UNIVERSITY. Downloaded on September 14,2023 at 08:39:08 UTC from IEEE Xplore. Restrictions apply.

6 IEEE SYSTEMS JOURNAL

Fig. 4. MEC server clustering in our proposed DyMECC under different loads.

A. Motivation and General Idea

Since the arrival rate of the video requests to the cluster is the
aggregation of the arrival rate of the video requests to the MEC
servers of the cluster, the intracluster delay is multiplicatively
increased by an increase in the arrival rate of the video requests
to the MEC servers, especially when the clusters are large. High
arrival rates result in many concurrent content deliveries, which
require simultaneous usage of the Xn interfaces for content
delivery path toward the serving MEC server. This creates a high
demand for preempting the Xn interfaces and results in many
videos being placed in the waiting queue of the Xn interfaces,
causing congestion and a significant increase in delivery delay.
Hence, there is a necessity for dynamic adjustment of the cluster
size with respect to the arrival rate of the video requests.

When the video request rate is low (light load), the cluster
can be large enough to take full advantage of the caches of the
MEC severs reside in the radio access network while keeping
the intracluster delay lower than the backhaul delay. On the
contrary, when the request rate is high (heavy load), the cluster
size should be shrunk to prevent overloading the Xn interfaces.
These two basic presumptions represent fundamental aspects
of the proposed DyMECC. Furthermore, DyMECC works as a
congestion control mechanism to prevent overloading the Xn
interfaces.

Fig. 4 illustrates an example of MEC server clustering for
different arrival rates (light load, medium load, and heavy load).
Thick blue lines determine the cluster region in which MEC
servers belonging to the same cluster share their cached video
contents to each other.

It is worth mentioning that since the MEC server clustering is
done as a logical grouping for cooperative caching, and the in-
terconnection of the MEC servers does not change, the available
capacity of Xn interfaces exploited for content transferring is not
affected by enlarging the cluster size. In other words, our solution
does not put any additional burden on the Xn interfaces in
terms of conventional exchanging of control information and just
exploits the available capacity of Xn interfaces for transferring
the video contents.

B. Determining the Cluster Size

In each time interval, the cluster size is derived based on the
observed request arrival rate. The proposed dynamic MEC server
clustering keeps the video delivery delay minimized in presence
of a variable arrival rate of video request. We derive the cluster
size that minimizes the video delivery delay while meeting the
constraints described in Section IV.

In light load conditions, there is almost no waiting time in the
delivery path of the video content from two MEC servers within
the cluster. In this case, the cluster size should be determined

in a way that the intracluster delay becomes lower than the
backhaul delay, i.e.,Dk < Db. In other words, the increase in the
intracluster delay is tolerable until it does not exceed the back-
haul delay, because if the intracluster delay becomes higher than
the backhaul delay, the MEC server clustering is not effective
anymore and results in higher video delivery delay. Hence, to
be ensured that the intracluster delay is always lower than the
backhaul delay, we should fulfill the following condition:

(
2
√
|Mk|L − 2

)
×

1
|V|

∑|V|
v=1 Sv

RXn
< Db (14)

where |Mk|L is the cluster size in light load conditions. If we
substitute 1

|V |
∑

ν∈V Sν with its equivalent S (the average size
of the videos in the video library), we have(

2
√

|Mk|L − 2
)
× S

RXn
< Db. (15)

Moving all the variables except |Mk|L to the right side of the
inequality, we have

2
√

|Mk|L <
RXn ×Db

S
+ 2. (16)

Finally, we get the following relation for the cluster size in light
load condition:

|Mk|L <
1

4
×
(
RXn ×Db

S
+ 2

)2

. (17)

In addition, according to the constraint (C4) in the optimiza-
tion problem, the average request arrival rate of the cluster
should be lower than the average service rate of the cluster,
i.e., λk < μk, 1 ≤ k ≤ K. If we substitute λk and μk with
their equivalents according to the (8) and (9), respectively, and
substitute the ξk with the average distance in the cluster k, in
terms of the number of MEC servers in the shortest delivery path
between any two arbitrary nodes in the cluster [32], we obtain

|Mk|H × λ ×
(
1− (1− α)|Mk |H

)
<

1

S
RXn

×
(√

|Mk |H
2 + 2

3

)
(18)

where |Mk|H is the cluster size in heavy load conditions.
Since the probability of the local cache-hit is 0 ≤ α ≤ 1,

we can approximate (1− α)|Mk |H with 1− (|Mk|H×α). If we
neglect 2

3 , which is a small constant value, we get

⇒ |Mk|2H × λ × α <
1

S
RXn

×
√

|Mk |H
2

. (19)

If we move all the variables of the cluster size |Mk|H to the
left-hand side of the inequality, we have

⇒ |Mk|2H ×
√

|Mk|H <
2×RXn

λ × S × α
(20)

⇒ |Mk|H <
5

√(
2× RXn

λ × S
× 1

α

)2

(21)

According to the above expression, the cluster size is the
function of the ratio of the bit rate of Xn interface to the aggregate
bit rate of video streams, RXn

λ×S , and the inverse of the local

cache-hit ratioα. The larger ratio of RXn

λ×S yields the larger cluster
size, whereas the larger value of α limits the cluster size for
limiting the video exchanges between the MEC servers inside the
cluster. As our contribution is taking benefit of the collaborative

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: CZECH TECHNICAL UNIVERSITY. Downloaded on September 14,2023 at 08:39:08 UTC from IEEE Xplore. Restrictions apply.

DOOSTMOHAMMADI et al.: DYNAMIC CLUSTERING FOR LOW-DELAY DELIVERY OF VIDEO CONTENT CACHED IN MEC SERVERS 7

Algorithm 1: DyMECC Algorithm.

Input: M = {1, 2, . . . , |M|}; V = {1, 2, . . . , |V|}; U =
{1, 2, . . . , |U|}, Δt.
1: t = 0.
2: Initialize caches by uniform distribution of video content

over MEC servers.
3: while t ≤ simulation time do
4: t = t+Δt.
5: Derive the cluster size in light load condition; |Mk|L

(17).
6: Derive the cluster size in heavy load condition; |Mk|H

(21).
7: Determine the cluster size at the time t;

|Mk|t = min{|Mk|L, |Mk|H} (22).
8: Group |M| MEC servers into the clusters with a size of

|Mk|t using K-means algorithm.
9: end while

caching of not only neighbor MEC servers, but also other MEC
servers, which are accessible via the communication interfaces
until the constraints (17) and (21) are met, we determine the
cluster size as follows:

|Mk| = min{|Mk|L, |Mk|H} =

min

[
1
4×

(
RXn×Db

S +2
)2

,
5

√(
2×RXn

λ×S × 1
α

)2]
. (22)

In fact, there is no specific transition point from the light load
to the heavy load. More precisely, while |Mk|L is lower than
|Mk|H , the load is considered as the light load, and the cluster
size is determined by |Mk|L. Similarly, as the load increases
and |Mk|H becomes lower than |Mk|L, the load is considered
as the heavy load and the cluster size is determined by |Mk|H . In
other words, we introduce a general formula for determining the
cluster size and the load intensity is implicitly taken into account
in determining the cluster size in each time interval using (22).

C. DyMECC Algorithm

In this section, we introduce the proposed algorithm, which
dynamically adjusts the cluster size based on the actual arrival
rate of video requests, see Algorithm 1. We distribute the video
contents of the video library uniformly over the MEC servers to
initialize the caches of the MEC servers (line 2). The DyMECC
algorithm runs periodically every Δt (line 4) and determines the
cluster size in each time interval (line 8). Then, the MEC servers
are regrouped into k clusters with a size |Mk|. The values of two
limits for the cluster size are calculated based on (17) and (21)
(see lines 5 and 6). The minimum of these two limits is used as
the cluster size in each time interval (line 7). The derived cluster
size |Mk| is applied to cluster the MEC servers into k groups
using K-means algorithm (line 8).

VI. PERFORMANCE EVALUATION

In this section, we evaluate the performance of our proposed
method in terms of different performance metrics, such as
video delivery delay, cluster-hit ratios, and the utilization of Xn
interfaces. We conduct comprehensive simulations to assess the
performance of DyMECC. In Section VI-A, we provide the

TABLE II
SIMULATION PARAMETERS

information about how we set up the simulation and set the
simulation parameters. We briefly introduce the algorithms that
we compare our proposed DyMECC against them in Section
VI-B. We categorize the competitive algorithms into the two
main categories. Finally, in Section VI-C, we analyze the
simulation results.

A. Simulation Settings

We set the main system parameters based on the related works
in our simulations, see Table II. Based on these parameters,
the transmission delay between two neighboring MEC server,
DXn, is 25 ms. The backhaul delay is considered 300 ms [33].
The intracluster delay, Dk, depends on the load and the size of
the cluster k, nevertheless for the special case of the cluster size
10 and the load of 5 requests per second, it is about 70 ms.
Additionally, as articulated in Section IV, we have posited a
scenario where the distribution of video content across the MEC
servers is uniform [22].

B. Competitive Algorithms

We compare the performance of the proposed DyMECC
with existing state-of-the-art works introduced in Section I. We
categorize the existing works into the following categories.

1) Fixed clustering: i.e., the clustering of the MEC servers
is fixed during the network setup and is not adjustable
with the variation of the arrival rate of video re-
quests [22], [23], [34], [35].

2) Noncooperative caching: in which no cooperation among
MEC servers is provided [12], [36].

In fixed clustering approaches, the cluster size is set to 10 as
it is assumed in [34].

C. Simulation Results and Analysis

In this section, we provide the results of comparing
our proposed algorithm with the algorithms categorized in
Section VI-B. We also analyze the performance of our proposed
algorithm with respect to different system parameters, i.e.,
cache size, video size, and Zipf parameter.

As illustrated in Fig. 5, the proposed DyMECC outperforms
the competitive algorithms in terms of the video delivery delay.
In a light load, the video delivery delay is reduced to about

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: CZECH TECHNICAL UNIVERSITY. Downloaded on September 14,2023 at 08:39:08 UTC from IEEE Xplore. Restrictions apply.

8 IEEE SYSTEMS JOURNAL

Fig. 5. Video delivery delay versus load.

Fig. 6. Cluster size versus load.

half of the video delivery delay achieved by the noncooperative
algorithms, and by 15% compared to the fixed clustering
algorithms. In the fixed algorithms, when the load is high,
the Xn interfaces within the cluster become saturated, and the
waiting times for transferring the videos over Xn interface
among MEC servers exponentially increase. Therefore, the
video delivery delay drastically rises. On the contrary, since the
clusters are shrinking in DyMECC when the load increases,
the video delivery delay is kept at its minimum possible value.
Also as evidenced, a slight increase in video delivery delay is
observed in noncooperative caching due to the queuing delay on
the serving MEC server, particularly in heavy load conditions.

As illustrated in Fig. 6, the DyMECC dynamically adjusts
the cluster size according to the variable load of video requests.
When the load is low, the cluster size is determined based on
(17). In the light load, DyMECC determines the cluster to be big
enough to maximize the cluster-hit ratio while intracluster delay
does not exceed the backhaul delay. In such case, DyMECC
minimizes the total number of clusters needed to handle the

Fig. 7. Cluster-hit ratio versus load.

users’ requests. As the load increases, (21) determines the cluster
size because the minimum value of the cluster size derived
from (17) and (21) is used to determine the cluster size, as
shown in (22). As the load continues to increase, the cluster
size may become even lower than the cluster size used in the
fixed algorithms, especially when the load exceeds 25 video
requests per second. This demonstrates the superiority of the
proposed DyMECC algorithm over the fixed algorithms in terms
of adapting to variable loads and reducing the cluster size to
handle any load.

The cluster-hit ratio remains nearly constant when the cluster
size does not change over time as shown in Fig. 7, while the
cluster-hit ratio in DyMECC changes with respect to the cluster
size which is dynamically determined at each time interval.
When the load is light, the clusters are big, and most of the
video requests are responded within the cluster that leads to a
lower video delivery delay compared to the fixed methods. As
the load increases, the cluster size shrinks. As a result, in heavy
load conditions, the clusters become small and consequently
the cluster-hits decrease. Although decreasing the cluster-hit
ratio seems unpleasant, it helps to reduce the content delivery
delay in heavy load conditions. As we discussed the tradeoffs in
Section III-B, when the load is heavy, fewer cluster-hits result
in shorter waiting time, and lower the intracluster delay, which
is the most significant contributor to the video delivery delay.
Therefore, by reducing the intracluster delay, the overall video
delivery delay can be reduced. The utilization of Xn interfaces
is illustrated in Fig. 8. If the cluster size is fixed, the utilization
of Xn interfaces increases almost linearly in relation to the load.
When the utilization of Xn interfaces exceeds 0.5, the waiting
time increases drastically and, consequently, the video deliv-
ery delay increases as well. Although our proposed DyMECC
provides low video delivery delay under different load intensi-
ties, its efficiency is more considerable in heavy loads. In fact,
DyMECC acts as a congestion avoidance mechanism to prevent
over-utilizing the capacity of Xn interfaces. Since the cluster size
is dynamically adjusted according to the load in DyMECC, when
the load is low, the cluster becomes large enough to efficiently
take advantage of the available capacity of Xn interfaces to

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: CZECH TECHNICAL UNIVERSITY. Downloaded on September 14,2023 at 08:39:08 UTC from IEEE Xplore. Restrictions apply.

DOOSTMOHAMMADI et al.: DYNAMIC CLUSTERING FOR LOW-DELAY DELIVERY OF VIDEO CONTENT CACHED IN MEC SERVERS 9

Fig. 8. Utilization of Xn interfaces versus load.

Fig. 9. Probability of fetching the requested video from the original media
server versus load.

reduce the video delivery delay. Thus, in light load, the uti-
lization of Xn interfaces in DyMECC is higher than in fixed
algorithms. As the load increases, the utilization of Xn interfaces
in DyMECC decreases in comparison to the fixed algorithms due
to the mechanism of the congestion avoidance in DyMECC.

Fig. 9 shows the probability of fetching the requested video
from the original media server. In DyMECC, the requested video
is only rarely (below 20% of the time) received from the original
media server via the backhaul when the load is not heavy. When
the load becomes heavy and the clusters shrink, more videos
are received from the original media server. However, the video
delivery delay is still much lower than in the fixed algorithms.

To more effectively demonstrate the performance improve-
ment of our proposed DyMECC over existing methods, we
conduct a comparative analysis with various Fixed clustering
schemes that employ different fixed cluster sizes. As illustrated
in Fig. 10, the saturation point of the system corresponds to
the cluster size, which highlights the limit of the cluster service

Fig. 10. DyMECC versus different fixed cluster sizes.

Fig. 11. DyMECC versus different fixed cluster sizes under light load condi-
tion.

rate with respect to the aggregated arrival rate of the cluster. In
contrast, the congestion avoidance feature of DyMECC ensures
that the video delivery delay does not lead to a drastic increase,
and hence ensures smooth video streaming. The fixed clustering
schemes, which rely on predetermined cluster sizes, often face
limitations in terms of adaptability to varying load conditions. As
a result, the fixed clustering is not efficient in case of the network
congestion. This is shown in Fig. 10, where the saturation occurs
earlier for systems with larger fixed cluster sizes, leading to a
rapid deterioration in video delivery quality.

To facilitate the comparison of the performance of DyMECC
with various fixed clustering schemes under light load con-
ditions, we zoom a part of Fig. 10 for loads lower than 5
requests per second in Fig. 11. As depicted in Fig. 11, when
the cluster sizes are greater or smaller than the optimal cluster
size determined by the DyMECC algorithm (for example the
optimal cluster size of 49 for arrival rate of 2 video requests
per second, see Fig. 7), the video delivery delay is higher
than that observed when using the proposed DyMECC. This

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: CZECH TECHNICAL UNIVERSITY. Downloaded on September 14,2023 at 08:39:08 UTC from IEEE Xplore. Restrictions apply.

10 IEEE SYSTEMS JOURNAL

Fig. 12. Cluster size versus load under different cache sizes.

Fig. 13. Video delivery delay versus load under different cache sizes.

highlights the relation between the intracluster delay and the
cluster hit-ratio, emphasizing the importance of selecting an
appropriate cluster size for efficient video delivery. Moreover,
Fig. 11 shows that the video delivery delay for the cluster sizes
of 30 and 40 exceeds that of the cluster size of 5 when the load
reaches 5 requests per second. This observation further indicates
that larger cluster sizes tend to cause the system to saturate more
rapidly, leading to a deterioration in video delivery performance.
These results emphasize the benefits of the DyMECC algorithm
in determining an optimal cluster size that balances the intra-
cluster delay and cluster-hit ratio.

As discussed in Section V, the probability of finding the
video content in the MEC server, α, is one of the main fac-
tors in determining the cluster size in each interval. Having a
fixed number of videos in the video library, α is a function of
cache size. In Fig. 12, we demonstrate that the cluster size is
dynamically determined in our proposed method with respect

Fig. 14. Video delivery delay versus load under different video sizes.

to the cache size, under different loads. Smaller cache sizes
yield bigger clusters, because the cluster-hits smoothly increases
with the cluster size for the small cache sizes. Moreover, since
concurrent video deliveries within the cluster are limited by the
Xn interface capacity, when the load is high and the cache size is
large, the cluster size is shrunk. For example, when the load is 20
requests per second and the cache size is 2500 Mbits, each cluster
consists of seven MEC servers, whereas for the cache size of
500 Mbits, the cluster size becomes nine.

Furthermore, we investigate the effect of key parameters
(cache size, Zipf parameter, Xn interface capacity, and video
size) of the system on the video delivery delay in our proposed
DyMECC. In Fig. 13, we show that DyMECC keeps the video
delivery delay low in different configurations of cache sizes
even if the load increases. However, the minimum delay is
different in each case. The reason behind the sharp increase
in the video delivery delay for the cache size 500 Mbits and the
loads greater than 10 requests per second is that the demand for
using the communication interfaces within the cluster is beyond
the capacity of Xn interfaces.

In addition, the video size is one of the key parameters that
affects the video delivery delay. As shown in Fig. 14, larger
videos result in longer video delivery delays. For example, when
the video size is 200 Mbits, the Xn interfaces within the cluster
become quickly over-utilized if the load increases. As discussed
in Section III-B, to balance between the cluster-hit ratio and the
intracluster delay, DyMECC switches from |Mk|H to |Mk|L for
determining the cluster size (see Algorithm 1). This results in
a reduction of the video delivery delay. In fact, we sacrifice the
cluster-hit ratio to reduce the intracluster delay by dwindling
the cluster size aimed to minimize the video delivery delay (See
Figs. 6 and 7 at the same time).

We also analyze the effect of the Zipf parameter of the
distribution of the video requests on the video delivery delay
in Fig. 15. A higher Zipf parameter results in a lower video
delivery delay. This is because, for the higher values of the
Zipf parameter, especially for the values greater than one, the
distribution of video requests becomes closer to the uniform

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: CZECH TECHNICAL UNIVERSITY. Downloaded on September 14,2023 at 08:39:08 UTC from IEEE Xplore. Restrictions apply.

DOOSTMOHAMMADI et al.: DYNAMIC CLUSTERING FOR LOW-DELAY DELIVERY OF VIDEO CONTENT CACHED IN MEC SERVERS 11

Fig. 15. Video delivery delay versus load under different Zipf parameters.

Fig. 16. Video delivery delay versus load under different Xn capacities

distribution. Additionally, a nearly sharp reduction in the video
delivery delay is observable while the load increases. The reason
is that during our proposed method of dynamic clustering, there
is a point at which the first reduction in cluster size occurs (e.g.,
from the cluster size of 49 to the cluster size of 34 for the load of
4 requests per second in our configuration, see Fig. 6) to prevent
the Xn interfaces to be overutilized.

Moreover, we delve deeper into the impact of Xn interface
capacity on the video delivery delay. As depicted in Fig. 16,
the performance of our proposed DyMECC algorithm improves
significantly as the capacity of the Xn interface increases. This
is an encouraging observation, as the development of high-
bandwidth Xn interfaces can further enhance the efficiency of
MEC server clustering for video content distribution. Addition-
ally, DyMECC can effectively accommodate the evergrowing
demand for higher video quality. For a capacity of 1 Gbps, the Xn
interface reaches close to its maximum utilization more quickly

compared to other values of Xn capacity. This can be attributed to
the fact that, with higher capacities, the queuing time for transfer-
ring video content within the cluster is significantly reduced. As
a result, the communication interfaces among the MEC servers
can handle more data without becoming congested, leading to
lower video delivery delays. This finding highlights the impor-
tance of incorporating high-capacity Xn interfaces in mobile
networks, as they enable more efficient MEC server clustering
and improve video content delivery performance. Furthermore,
this suggests that future mobile networks should continue to
invest in the development and deployment of advanced commu-
nication interfaces to accommodate the increasing demand for
high-quality video content and ensure seamless video delivery
to the end users.

VII. CONCLUSION

We have proposed a dynamic MEC server clustering scheme
to minimize the video delivery delay. DyMECC adopts
the cluster size based on the actual workload of video requests.
The simulation results prove that DyMECC outperforms the
existing fixed algorithms in terms of video delivery delay, espe-
cially when the arrival rate of video requests is high. DyMECC
reduces the video delivery delay by more than 15% over existing
fixed algorithms while prevents Xn interfaces to be saturated.

In future, we plan to extend our proposed DyMECC to take
into account the computational capacity of MEC servers, which
can be exploited for online video transcoding to dynamically de-
termine the cluster size. Moreover, we intend to adapt DyMECC
for scenarios that unmanned aerial vehicle-based cache-enabled
MEC servers provide video delivery services to the users.

REFERENCES

[1] Ericsson Public Information, “Ericsson mobility report Q4 2022
update,” Technical Report, 2022. [Online]. Available: https:
//www.ericsson.com/491da6/assets/local/reports-papers/mobility-
report/documents/2022/ericsson-mobility-report-q4-2022.pdf

[2] Cisco and I. Cisco Systems, “Cisco annual internet report (2018–
2023),” Cisco White Paper, San Jose, CA, USA, 2020. [Online].
Available: https://www.cisco.com/c/en/us/solutions/collateral/executive-
perspectives/annual-internet-report/white-paper-c11-741490.html

[3] C. and I. C. Systems, “Cisco visual networking index: Forecast and
trends, 2017–2022 White Paper,” Cisco Forecast Methodol., vol. 17,
pp. 2017–2022, 2019.

[4] Z. Zhang et al., “6G wireless networks: Vision, requirements, architecture,
and key technologies,” IEEE Veh. Technol. Mag., vol. 14, no. 3, pp. 28–41,
Sep. 2019.

[5] P. Yang, Y. Xiao, M. Xiao, and S. Li, “6G wireless communications:
Vision and potential techniques,” IEEE Netw., vol. 33, no. 4, pp. 70–75,
Jul./Aug. 2019.

[6] H. Pang, J. Liu, X. Fan, and L. Sun, “Toward smart and cooperative edge
caching for 5G networks: A. deep learning based approach,” in Proc.
IEEE/ACM 26th Int. Symp. Qual. Serv., 2018, pp. 1–6.

[7] Y. Liu, S. Wang, M. S. Obaidat, X. Li, and P. Vijayakumar, “Service chain
caching and workload scheduling in mobile edge computing,” IEEE Syst.
J., vol. 16, no. 3, pp. 4389–4400, Sep. 2022.

[8] F. Brunero and P. Elia, “Fundamental limits of combinatorial multi-
access caching,” IEEE Trans. Inf. Theory, vol. 69, no. 2, pp. 1037–1056,
Feb. 2023.

[9] Z. Sang, S. Guo, Q. Wang, and Y. Wang, “GCS: Collaborative video cache
management strategy in multi-access edge computing,” Ad Hoc Netw.,
vol. 117, 2021, Art. no. 102516.

[10] C. Fang et al., “Cache-assisted content delivery in wireless networks: A
new game theoretic model,” IEEE Syst. J., vol. 15, no. 2, pp. 2653–2664,
Jun. 2021.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: CZECH TECHNICAL UNIVERSITY. Downloaded on September 14,2023 at 08:39:08 UTC from IEEE Xplore. Restrictions apply.

https://www.ericsson.com/491da6/assets/local/reports-papers/mobility-report/documents/2022/ericsson-mobility-report-q4-2022.pdf
https://www.ericsson.com/491da6/assets/local/reports-papers/mobility-report/documents/2022/ericsson-mobility-report-q4-2022.pdf
https://www.ericsson.com/491da6/assets/local/reports-papers/mobility-report/documents/2022/ericsson-mobility-report-q4-2022.pdf
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html

12 IEEE SYSTEMS JOURNAL

[11] C. Li, Y. Zhang, M. Song, X. Yan, and Y. Luo, “An optimized content
caching strategy for video stream in edge-cloud environment,” J. Netw.
Comput. Appl., vol. 191, 2021, Art. no. 103158.

[12] H. Zhu, Y. Cao, W. Wang, T. Jiang, and S. Jin, “Deep reinforcement
learning for mobile edge caching: Review, new features, and open issues,”
IEEE Netw., vol. 32, no. 6, pp. 50–57, Nov./Dec. 2018.

[13] S. Rezvani, S. Parsaeefard, N. Mokari, M. R. Javan, and H. Yanikomeroglu,
“Cooperative multi-bitrate video caching and transcoding in multicarrier
NOMA-assisted heterogeneous virtualized MEC networks,” IEEE Access,
vol. 7, pp. 93511–93536, 2019.

[14] D. Tsigkari and T. Spyropoulos, “Caching and recommendation decisions
at transcoding-enabled base stations,” in Proc. IEEE Glob. Commun. Conf.,
Rio de Janeiro, Brazil, 2022, pp. 147–153.

[15] C. Li, H. Zhao, Y. Zhao, B. Zhang, and C. Li, “Joint transcoding- and
recommending-based video caching at network edges,” IEEE Syst. J.,
vol. 16, no. 3, pp. 4928–4937, Sep. 2022.

[16] M. Yeh, C.-H. Wang, D.-N. Yang, and W. Liao, “Efficient caching for
360◦ videos with dynamic view selection,” in Proc. IEEE/CIC Int. Conf.
Commun. China, 2019, pp. 225–230.

[17] M. Yeh, C.-H. Wang, D.-N. Yang, J.-T. Lee, and W. Liao, “Mobile
proxy caching for multi-view 3D videos with adaptive view selec-
tion,” IEEE Trans. Mobile Comput., vol. 21, no. 8, pp. 2909–2921,
Aug. 2022.

[18] K. Zhang, S. Leng, Y. He, S. Maharjan, and Y. Zhang, “Cooperative content
caching in 5G networks with mobile edge computing,” IEEE Wireless
Commun., vol. 25, no. 3, pp. 80–87, Jun. 2018.

[19] P. Lin, K. S. Khan, Q. Song, and A. Jamalipour, “Caching in heterogeneous
ultradense 5G networks: A comprehensive cooperation approach,” IEEE
Veh. Technol. Mag., vol. 14, no. 2. pp. 22–32, Jun. 2019.

[20] K. Zhang, J. Cao, S. Maharjan, and Y. Zhang, “Digital twin empowered
content caching in social-aware vehicular edge networks,” IEEE Trans.
Computat. Social Syst., vol. 9, no. 1, pp. 239–251, Feb. 2022.

[21] Z. Gu, H. Lu, and C. Zou, “Horizontal and vertical collaboration for
VR delivery in MEC-enabled small-cell networks,” IEEE Commun. Lett.,
vol. 26, no. 3, pp. 627–631, Mar. 2022.

[22] K. Bilal, E. Baccour, A. Erbad, A. Mohamed, and M. Guizani, “Collab-
orative joint caching and transcoding in mobile edge networks,” J. Netw.
Comput. Appl., vol. 136, pp. 86–99, 2019.

[23] D. Ren, X. Gui, K. Zhang, and J. Wu, “Hybrid collaborative caching in
mobile edge networks: An analytical approach,” Comput. Netw., vol. 158,
pp. 1–16, 2019.

[24] S. Zhang, P. He, K. Suto, P. Yang, L. Zhao, and X. Shen, “Cooperative edge
caching in user-centric clustered mobile networks,” IEEE Trans. Mobile
Comput., vol. 17, no. 8, pp. 1791–1805, Aug. 2018.

[25] Z. Chen, J. Lee, T. Q. S. Quek, and M. Kountouris, “Cooperative caching
and transmission design in cluster-centric small cell networks,” IEEE
Trans. Wireless Commun., vol. 16, no. 5, pp. 3401–3415, May 2017.

[26] R. Chen, H. Lu, and P. Ma, “User-centric cooperative MEC service
offloading,” in Proc. IEEE Wireless Commun. Netw. Conf., 2021, pp. 1–6.

[27] Y. -H. Chiang, W. Liao, and Y. Ji, “RELISH: Green multicell clustering
in heterogeneous networks with shareable caching,” in Proc. IEEE Glob.
Commun. Conf., 2018, pp. 1–7.

[28] S. Song, C. Lee, H. Cho, G. Lim, and J. M. Chung, “Clustered virtualized
network functions resource allocation based on context-aware grouping
in 5G edge networks,” IEEE Trans. Mobile Comput., vol. 19, no. 5,
pp. 1072–1083, May 2020.

[29] G. S. Park and H. Song, “Cooperative base station caching and X2
link traffic offloading system for video streaming over SDN-enabled 5G
networks,” IEEE Trans. Mobile Comput., vol. 18, no. 9, pp. 2005–2019,
Sep. 2018.

[30] S. Zhou et al., “Caching in dynamic environments: A. near-optimal on-
line learning approach,” IEEE Trans. Multimedia, vol. 25, pp. 792–804,
2023.

[31] I. Parvez, A. Rahmati, I. Guvenc, A. I. Sarwat, and H. Dai, “A survey on
low latency towards 5G: RAN, core network and caching solutions,” IEEE
Commun. Surv. Tut., vol. 20, no. 4, pp. 3098–3130, Fourthquarter 2018.

[32] R. Luo, D. Belis, R. M. E. Amiee, and G. A. Manson, “Estimation of
average hop count using the grid pattern in multi-hop wireless ad-hoc
network,” in Proc. London Commun. Symp., 2002, pp. 1–4.

[33] M. F. Tuysuz and M. E. Aydin, “QoE-based mobility-aware collaborative
video streaming on the edge of 5G,” IEEE Trans. Ind. Informat., vol. 16,
no. 11, pp. 7115–7125, Nov. 2020.

[34] Y. Zhou, Z. Zhao, R. Li, H. Zhang, and Y. Louet, “Cooperation-based prob-
abilistic caching strategy in clustered cellular networks,” IEEE Commun.
Lett., vol. 21, no. 9, pp. 2029–2032, Sep. 2017.

[35] Y. Sun, Z. Chen, and H. Liu, “Delay analysis and optimization in cache-
enabled multi-cell cooperative networks,” in Proc. IEEE Glob. Commun.
Conf., 2016, pp. 1–7.

[36] Y. Dong, S. Guo, Q. Wang, S. Yu, and Y. Yang, “Content caching-enhanced
computation offloading in mobile edge service networks,” IEEE Trans.
Veh. Technol., vol. 71, no. 1, pp. 872–886, Jan. 2022.

Ali Doostmohammadi received the B.Sc. degree
in computer engineering from the Ferdowsi Uni-
versity of Mashhad. Mashhad, Iran, and the M.Sc.
degree in computer engineering from the Iran Uni-
versity of Science and Technology, Tehran, Iran,
in 2004 and 2008, respectively. He is currently
working toward the Ph.D. degree in reducing video
delivery delay in 6G mobile networks using mo-
bile edge computing with the the Faculty of Com-
puter Engineering, University of Isfahan, Isfahan,
Iran.

He is also with 6Gmobile Research Laboratory, Czech Technical Univer-
sity, Prague, Czech Republic, since 2021. His research interests include com-
puter networks, mobile edge computing, and collaborative caching in mobile
networks.

Mohammad Reza Khayyambashi was born in Is-
fahan, Iran in 1961. He received the B.Sc. degree in
computer hardware engineering from Tehran Univer-
sity, Tehran, Iran, and the M.Sc. degree in computer
architecture from the Sharif University of Technology
(SUT), Tehran, Iran, and the Ph.D. degree in computer
engineering, distributed systems from University of
Newcastle upon Tyne, Newcastle upon Tyne, Eng-
land, U.K., in 1987, 1990, and 2006, respectively.

He is currently working as an Associate Professor
with the Department of Computer Architecture, Fac-

ulty of Computing Engineering, University of Isfahan, Isfahan, Iran. He has
successfully supervised graduated Ph.D. and M.Sc. students and is currently
supervising Ph.D. students in his research area. His research interests include
distributed systems, computer networking, software defined network, mobile
computing, Internet of Things (IoT), and edge/fog/cloud computing.

Naser Movahedinia received the B.Sc. degree
in electrical engineering from Tehran University,
Tehran, Iran in 1987, the M.Sc. degree in electrical
and communication engineering from Isfahan Uni-
versity of Technology, Isfahan, Iran in 1990, and the
Ph.D. degree in system engineering, telecommuni-
cation from Carleton University, Ottawa, Canada in
1997.

He is currently a Full Professor with the Faculty
of Computer Engineering, University of Isfahan. His
research interests include wireless networks, artificial

intelligence in communication, and Internet Technology.

Zdenek Becvar (Senior Member, IEEE) received the
M.Sc. and Ph.D. degrees in telecommunication engi-
neering from Czech Technical University in Prague,
Czech Republic, in 2005 and 2010, respectively.

He has authored or coauthored more than 100 con-
ference and journal papers and he is the (co-)inventor
of four US patents. He is currently an Associate
Professor with the Department of Telecommunication
Engineering, Czech Technical University in Prague,
and he leads 6Gmobile Research Lab at the same
university. From 2006 to 2007, he was with Sitronics

R&D Center, Prague, focusing on speech quality in VoIP. Furthermore, he
was involved in research activities of Vodafone R&D Center, Czech Technical
University in Prague, in 2009. He was on internships with Budapest Politech-
nic, Budapest, Hungary, in 2007, CEA-Leti, Grenoble, France, in 2013, and
EURECOM, Biot, France, in 2016 and 2019. From 2013 to 2017, he was a
representative of the Czech Technical University in Prague in ETSI and 3GPP
standardization organizations.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: CZECH TECHNICAL UNIVERSITY. Downloaded on September 14,2023 at 08:39:08 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

