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Abstract
Channel quality is an essential information for 

management of radio resources in mobile net-
works. To acquire the channel quality information, 
pilot (or reference) signals are commonly trans-
mitted, measured, and reported to the network. 
However, the process of channel quality acquisi-
tion is both time and energy consuming. More-
over, the radio resources are competitively shared 
by the pilot signals and users’ data. This motivates 
an employment of prediction-based approaches 
determining the channel quality at low cost to 
avoid over-consumption of resources for pilots. 
Machine learning is seen as an efficient way to 
deal with the channel quality prediction, since it 
allows to reveal usually hidden relations among 
known and unknown channel quality measure-
ments. In this article, we first overview state-of-
the-art works leveraging the time, frequency, and 
spatial correlations among already known chan-
nel qualities and the channel(s), whose quality 
should be predicted. Furthermore, we outline a 
framework for a network correlation-based chan-
nel prediction enabling to determine the quality 
of unknown channel between any two communi-
cating nodes by knowing only channels of these 
two nodes to reference nodes. Then, we demon-
strate use-cases and application scenarios for all 
machine learning-based channel quality predic-
tions. We also assess potential reduction in chan-
nel quality measurement-related overhead by all 
approaches to demonstrate their complementar-
ity and capabilities to support low-overhead and 
energy-friendly massive deployment of devices in 
6G mobile networks. 

Introduction
With the sixth generation (6G) of mobile networks 
already taking more tangible shapes, an unprece-
dented amount of data is expected to be generat-
ed in new applications and use-cases by a plethora 
of devices, spanning from mobile phones, sensors, 
to vehicles, machines, or Internet of Things (IoT) 
devices. To cope with this huge amount of data, 
high data rates should be facilitated while guar-
anteeing quality of service and quality of experi-
ence. This, consequently, promotes the necessity 
to dynamically optimize key communication-relat-
ed processes and decisions, such as radio resource, 
interference, or mobility management [1].

The optimization of communication and corre-
sponding decisions invoke knowledge of the com-

munication channel quality among communicating 
nodes (note that, in this article, the term ”node” 
represents any wireless communicating entity 
including any device or user equipment as well as 
a base station). In the current standardized view 
of the mobile networks, the acquisition of channel 
quality by means of large-scale fading, required for 
radio resource management and control, is facil-
itated via pilot (or reference) signals transmitted 
by communicating nodes and measured by the 
communicating peer nodes [2]. Unfortunately, the 
presence of pilot signals reduces the amount of 
resources available for data communication, as the 
pilot signals share the radio resources with data 
communication. Such overhead is manageable if 
the number of channels to be measured is limit-
ed. However, the number of channels inevitably 
increases with the growing network density and 
with beyond 5G and 6G use-cases fueled by the 
various vehicular, IoT, and massive machine-type 
communication scenarios. Moreover, the dimen-
sionality of the channels grows in the context of 
massive antenna arrays at the base station and, 
possibly soon, also at the devices.

Besides, various types of the channels exist 
depending on the applied communication par-
adigm, use-cases, and/or infrastructure. For 
example, device-to-device (D2D) or vehicu-
lar communications representing a direct data 
exchange between two nodes (e.g., devices or 
vehicles). If such communication is activated, 
an efficient exploitation of the radio resources 
requires a measurement of the “direct” channel 
between two devices or vehicles. However, in a 
network with an immense density of the devices, 
the number of direct channels scales quadrati-
cally making the acquisition of channel qualities 
costly. Another example of communication type 
is the deployment of flying base stations, which 
replaces the communication between a classi-
cal ground base station and the communicating 
nodes. Such advanced infrastructure necessitates 
the measurement of both the backhaul channels 
(i.e., channels between flying base stations and 
ground base stations) and the access channels 
(i.e., channels between flying base stations and 
the devices).

Bearing in mind plenty of various types of 
channels, the measurement of the channel qual-
ity may cause a drain in the radio resources due 
to a high number of pilot signals. Consequently, 
achievable data rates can be impaired, since the 
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radio resources are shared for both data as well 
as for pilot signals. Theoretically, in an extreme 
case, the channel quality measurement itself could 
even consume all radio resources and no resourc-
es would remain for data transmission. Besides, 
an undesirable energy consumption and delay 
in the communication control procedures (such 
as radio resource or mobility management) can 
unbearably grow making the pilot-based channel 
measurement impractical [3]. Therefore, various 
techniques predicting channel quality based on 
a channel model and statistics have been devel-
oped [4]. These conventional techniques perform 
well in stationary wireless networks, however, do 
not reach sufficient accuracy in highly dynamic 
scenarios [5] envisioned in 6G.

Motivated by the above, it is essential to devise 
new and practical methods that can acquire the 
knowledge about various channels while reducing 
the number of pilot transmissions and measure-
ments. Due to complex and dynamic scenarios 
with many communicating nodes, obstacles, and 
moving objects envisioned in 6G, machine learn-
ing is seen as an efficient way to predict the chan-
nel quality from other channel-related information 
available in the network. A successful prediction 
with a high accuracy relies on any, possibly hidden, 
correlations and similarities that may exist between 
the available and missing channel qualities. In 
existing solutions, the similarity between different 
channels or channel-related information typically 
results from time [5, 6], frequency [7–9], or spatial 
[10–12] correlations among the channels. 

In this article, we first survey state-of-the-art 
channel quality prediction techniques exploiting 
machine learning. Then, we complement exist-
ing works with the network correlation-based 
approach predicting the channel quality between 

any two communicating nodes solely based 
on information commonly available in the net-
work, i.e., channel qualities to reference nodes. 
Since the relation between known and unknown 
channel qualities is complex and hidden due 
to unknown and changeable environment and 
network topology, it cannot be predicted via 
traditional techniques. Hence, the network cor-
relation-based prediction is facilitated by deep 
neural network (DNN). We show the proposed 
network correlation-based prediction supplements 
portfolio of use-cases, where a channel predic-
tion can be applied to significantly reduce the 
overhead in the channel quality measurement. 
Such reduction paves the way to an efficient 
radio resource management in scenarios with a 
massive amount of communicating nodes direct-
ly exchanging information with each other, for 
example, as in vehicular communications. We 
also investigate the impact of disclosing additional 
user-related information represented by known 
location of some communicating nodes on the 
prediction accuracy.

Overview of Conventional Machine 
Learning-Based Channel Quality Predictions

This section overviews state-of-the-art ways to pre-
dict the quality of one channel from the known 
quality of another channel(s) based on a sort 
of similarity between the predicted and known 
channels. For presentation purposes, we classify 
the similarity according to a changing variable 
(time, frequency, space) in the prediction of chan-
nel quality, as illustrated in Fig. 2 and we discuss 
these, respectively, in the following subsections. 
In practice, of course, two or even all correlations 
may overlap and coexist.

FIGURE 1. Future mobile network with various types of channels, some with quality known to the network via common pilot-based channel quality measurement (blue solid lines) and some with quality 
not known to the network (red dashed lines).
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Fig. 1: Future mobile network with various types of channels, some with quality known to the network via common pilot-based
channel quality measurement (blue solid lines) and some with quality not known to the network (red dashed lines).

pilot-based channel measurement impractical [3]. Therefore,
various techniques predicting channel quality based on a
channel model and statistics have been developed [4]. These
conventional techniques perform well in stationary wireless
networks, however, do not reach sufficient accuracy in highly
dynamic scenarios [5] envisioned in 6G.

Motivated by the above, it is essential to devise new
and practical methods that can acquire the knowledge about
various channels while reducing the number of pilot trans-
missions and measurements. Due to complex and dynamic
scenarios with many communicating nodes, obstacles, and
moving objects envisioned in 6G, machine learning is seen
as an efficient way to predict the channel quality from other
channel-related information available in the network. A suc-
cessful prediction with a high accuracy relies on any, possibly
hidden, correlations and similarities that may exist between the
available and missing channel qualities. In existing solutions,
the similarity between different channels or channel-related
information typically results from time [5], [6], frequency [7],
[8], [9], or spatial [10], [11], [12] correlations among the
channels.

In this paper, we first survey state-of-the-art channel quality
prediction techniques exploiting machine learning (Section
II). Then, we complement existing works with the network
correlation-based approach predicting the channel quality be-
tween any two communicating nodes solely based on in-
formation commonly available in the network, i.e., channel
qualities to reference nodes (Section III). Since the relation
between known and unknown channel qualities is complex
and hidden due to unknown and changeable environment
and network topology, it cannot be predicted via traditional

techniques. Hence, the network correlation-based prediction
is facilitated by deep neural network (DNN). We show the
proposed network correlation-based prediction supplements
portfolio of use-cases, where a channel prediction can be
applied to significantly reduce the overhead in the channel
quality measurement (Section IV). Such reduction paves the
way to an efficient radio resource management in scenarios
with a massive amount of communicating nodes directly
exchanging information with each other, for example, as in
vehicular communications. We also investigate the impact
of disclosing additional user-related information represented
by known location of some communicating nodes on the
prediction accuracy (Section V).

II. OVERVIEW OF CONVENTIONAL MACHINE
LEARNING-BASED CHANNEL QUALITY PREDICTIONS

This section overviews state-of-the-art ways to predict the
quality of one channel from the known quality of another chan-
nel(s) based on a sort of similarity between the predicted and
known channels. For presentation purposes, we classify the
similarity according to a changing variable (time, frequency,
space) in the prediction of channel quality, as illustrated in
Fig. 2 and we discuss these, respectively, in the following
subsections. In practice, of course, two or even all correlations
may overlap and coexist.

A. Time Correlation-based Channel Quality Prediction

The time correlation represents a relation, which maps
previous (historical) channel quality between two commu-
nicating nodes to the future channel quality between the
same two nodes. Such correlation exists, since the channel
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Time Correlation-Based Channel Quality Prediction
The time correlation represents a relation, 
which maps previous (historical) channel quality 
between two communicating nodes to the future 
channel quality between the same two nodes. 
Such correlation exists, since the channel between 
the two communicating nodes changes following 
a certain pattern depending on the environment 
and propagation medium. Therefore, the changes 
in the channel quality over time can be predicted 
knowing the quality of the same channel in the 
past, as demonstrated in [5, 6]. This, however, can 
be done over only a relatively short period of time 
(order of milliseconds) within which the pathloss 
between the two nodes is quite similar and the 
prediction aims mainly to mimic the fast fading 
behavior over this short period [4].

The principle of time correlation-based channel 
quality prediction is illustrated in Fig. 2 on an exam-
ple of the channel between Node A and Node B. 
The channel quality between these two nodes in 
the interval from T – n till the current time T at fre-
quency f1 are exploited to predict the channel qual-
ity between the same two nodes and at the same 
frequency f1, but in the future time T + 1. Similarly, 
the channel quality from the time T – n + 1 till the 
time T + 1 allows to predict the quality of the same 
channel at the time T + 2 and so on so forth. 

Such process represents prediction of a 
future sequence (channel qualities from T + 1 till 
T + m) from the past sequence (channel qualities 
from T – n till T). Such prediction of sequences 
is typically solved via recurrent neural networks 
(RNNs), since the RNN includes feed-back con-
nections in its structure allowing to understand 
the sequence [5].

Frequency Correlation-Based Channel Quality Prediction
Another option for the channel quality predic-
tion is to capitalize on the relation among the 
channels at different frequencies between two 
nodes at the same time and at the same position. 
Figure 2 shows an example, where the channel 
between Node A and Node C at the frequency 
f1 is correlated with the channel between the 
same nodes at the same time, but at different 
frequency f2; f1 ≠ f2. This concept is usually 
exploited to predict the downlink channels from 
the uplink channels as considered, e.g., in [7]. In 

this case, the neural network is trained to extract 
the function that maps the uplink channel state 
information of one communicating node to the 
downlink channel state information of the same 
communicating node [7].

The frequency correlation can be used to 
directly predict the communication related 
decisions for the high frequency bands (e.g., 
mmWaves) based on the channel information 
from a lower frequency band as demonstrated in 
[8, 9]. In this case, the channel prediction is inex-
plicit as the channel information at the mmWave 
frequencies are not directly predicted from the 
channel information in the low frequency band. 
Instead, the decisions related to the communica-
tion via mmWaves are predicted from the channel 
quality in the low frequency bands. To perform 
this prediction, DNNs are adopted in [8, 9]. 

Spatial Correlation-Based Channel Quality Prediction
In addition to the time and frequency correlations, 
also the spatial correlation exploring the loca-
tion-related commonality among the communi-
cating nodes is adopted in literature. The concept 
of the spatial correlation is based on the fact that, 
theoretically, channels from two spatially close 
nodes to another node at the same frequency 
and at the same time are influenced by a similar 
signal propagation. This basic principle is shown 
in Fig. 2, where Node E and Node D are close 
to each other. Consequently, the channel quality 
between Node A and Node D can be extracted 
from the quality of the channel between Node A 
and Node E (or vice versa).

The spatial correlation for the prediction of the 
channel quality is adopted in [10]. The authors 
suggest measuring the channel quality between 
the communicating and reference nodes via pilot 
signals only when the reference node is active. 
The measured pilot channel qualities are stored 
with their corresponding locations of the com-
municating nodes. Then, the stored information 
is used for the channel estimation when the ref-
erence nodes (e.g., BSs) are in an energy saving 
mode and the pilot signals are not transmitted 
[10]. Missing channel qualities at the locations, 
where no measurement has been done can be 
predicted from the stored channels exploiting the 
spatial correlation and implemented via K-near-
est neighbor (KNN) supervised machine learning 
[10]. The KNN gives a rough channel quality that 
can be further improved via a convolutional neu-
ral network (CNN) [10]. The CNN is suitable since 
the cell can be interpreted as pixel-like set of dis-
crete locations, where every location (or ”pixel”) 
includes a number representing the channel qual-
ity from this location to the reference node. The 
area with the discrete pixel-like locations can be 
seen as an image and CNN is known to perform 
well in image-related prediction problems. 

The spatial correlation is also used in [11], where 
the goal is to build a radio map composed of the 
pairs of location and channel quality (represented 
by path loss) to the reference node (represented 
by the BS) similarly as the pixels in [10]. In [11], the 
channel quality to the reference node is known for 
some locations and the rest of the unknown path 
losses to the reference node from the remaining 
locations are predicted via DNN. This way, the radio 
map is filled and the path losses to the reference 

FIGURE 2. Principle of channel quality prediction based on: time correlation between previous (historical) and future 
channel qualities between Nodes A and B (left side of figure), frequency correlation of channels between Nodes A 
and C at frequencies f1 and f2 (right side), and spatial correlation of channel between Nodes A and D with channel 
between Nodes A and E (bottom).
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Fig. 2: Principle of channel quality prediction based on: time correlation between previous (historical) and future channel
qualities between Nodes A and B (left side of figure), frequency correlation of channels between Nodes A and C at frequencies
𝑓𝑓1 and 𝑓𝑓2 (right side), and spatial correlation of channel between Nodes A and D with channel between Nodes A and E (bottom).

between the two communicating nodes changes following a
certain pattern depending on the environment and propagation
medium. Therefore, the changes in the channel quality over
time can be predicted knowing the quality of the same channel
in the past, as demonstrated in [5], [6]. This, however, can
be done over only a relatively short period of time (order of
milliseconds) within which the pathloss between the two nodes
is quite similar and the prediction aims mainly to mimic the
fast fading behavior over this short period [4].

The principle of time correlation-based channel quality
prediction is illustrated in Fig. 2 on an example of the channel
between Node A and Node B. The channel quality between
these two nodes in the interval from 𝑇𝑇 −𝑛𝑛 till the current time
𝑇𝑇 at frequency 𝑓𝑓1 are exploited to predict the channel quality
between the same two nodes and at the same frequency 𝑓𝑓1, but
in the future time 𝑇𝑇 +1. Similarly, the channel quality from the
time 𝑇𝑇 − 𝑛𝑛 + 1 till the time 𝑇𝑇 + 1 allows to predict the quality
of the same channel at the time 𝑇𝑇 + 2 and so on so forth.

Such process represents prediction of a future sequence
(channel qualities from 𝑇𝑇 +1 till 𝑇𝑇 +𝑚𝑚) from the past sequence
(channel qualities from 𝑇𝑇 − 𝑛𝑛 till 𝑇𝑇). Such prediction of
sequences is typically solved via recurrent neural networks
(RNNs), since the RNN includes feed-back connections in its
structure allowing to understand the sequence [5].

B. Frequency Correlation-based Channel Quality Prediction

Another option for the channel quality prediction is to
capitalize on the relation among the channels at different
frequencies between two nodes at the same time and at the
same position. Fig. 2 shows an example, where the channel
between Node A and Node C at the frequency 𝑓𝑓1 is correlated
with the channel between the same nodes at the same time,
but at different frequency 𝑓𝑓2; 𝑓𝑓1 ≠ 𝑓𝑓2. This concept is
usually exploited to predict the downlink channels from the

uplink channels as considered, e.g., in [7]. In this case, the
neural network is trained to extract the function that maps
the uplink channel state information of one communicating
node to the downlink channel state information of the same
communicating node [7].

The frequency correlation can be used to directly predict the
communication related decisions for the high frequency bands
(e.g., mmWaves) based on the channel information from a
lower frequency band as demonstrated in [8], [9]. In this case,
the channel prediction is inexplicit as the channel information
at the mmWave frequencies are not directly predicted from
the channel information in the low frequency band. Instead,
the decisions related to the communication via mmWaves are
predicted from the channel quality in the low frequency bands.
To perform this prediction, DNNs are adopted in [8], [9].

C. Spatial Correlation-based Channel Quality Prediction

In addition to the time and frequency correlations, also the
spatial correlation exploring the location-related commonality
among the communicating nodes is adopted in literature.
The concept of the spatial correlation is based on the fact
that, theoretically, channels from two spatially close nodes to
another node at the same frequency and at the same time are
influenced by a similar signal propagation. This basic principle
is shown in Fig. 2, where Node E and Node D are close to
each other. Consequently, the channel quality between Node A
and Node D can be extracted from the quality of the channel
between Node A and Node E (or vice versa).

The spatial correlation for the prediction of the channel
quality is adopted in [10]. The authors suggest measuring
the channel quality between the communicating and reference
nodes via pilot signals only when the reference node is active.
The measured pilot channel qualities are stored with their
corresponding locations of the communicating nodes. Then,
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node for all locations in the map are determined. 
The spatial correlation can also be used for 

prediction of channel state information including 
complex channel matrix and signaling overhead 
reduction in the networks with Multiple-Input-Mul-
tiple-Output (MIMO) [12]. In this case, instead 
of using the pilot signals to estimate the chan-
nel matrices between all the antennas at the 
reference and communicating nodes, only the 
channels from a subset of antennas to the com-
municating node are estimated conventionally 
via the pilots. Then, the pilot estimated channel 
matrices are exploited to predict the rest of the 
channel matrices from the remaining antennas to 
the communicating node via linear regression and 
support vector regression models [12]. 

Network Correlation-Based Channel Prediction
In previous section, the predicted channel is 
assumed to be tightly coupled in time, frequency, 
or space to the known channel(s). Such approach, 
however, does not allow to predict channels 
seemingly disconnected from the known chan-
nels. Hence, in this section, we focus on the prob-
lem of the channel quality prediction between any 
two nodes based on a complex relation among 
various information available in the network. This 
approach targets prediction of a large scale fading 
for radio resource management purposes. 

In contrast to the approaches presented in the 
previous section, the network correlation does 
not rely on proximity between communication 
nodes, historical channel quality, or the communi-
cation frequency. Hence, the network correlation 
is of a different nature and the channel quality 
in terms of the large-scale fading is predicted 
from network-related information, represented 
by channels of the communicating nodes to the 
reference nodes, that share topology- and envi-
ronment-based commonalities with the predicted 
channels. This commonality leverages the fact that 
the channel between two communicating nodes 
is correlated with the channels from these two 
nodes to reference nodes. An example of the ref-
erence nodes is a set of base stations surrounding 
the communicating nodes between which the 
channel quality should be predicted. We illustrate 
the principle of network correlation-based chan-
nel prediction and, then, we discuss a possibility 
to enhance performance by exploiting partially 
disclosed information on the users’ location. 

To understand the network correlation, let us 
first imagine a simple scenario in an open field 
without obstacles, where the channel quality from 
any two communicating nodes (e.g., devices) to 
the neighboring reference nodes (e.g., BSs) is esti-
mated via pilot signals. The locations of these two 
communicating nodes are unique in terms of a rep-
resentation via the quality of channels from each 
communicating node to the reference nodes simi-
lar to triangulation principle adopted in navigation 
and positioning systems. The unique locations of 
the two communicating nodes correspond to a 
specific quality of the channel between these two 
nodes. Therefore, it is expected that the channels 
from these two communicating nodes to three ref-
erence nodes are enough to predict the quality 
of the channel between the two communicating 
nodes. However, this simple principle does not 
apply for a generic environment with obstacles, 

where the relation between the channels from 
two communicating nodes to the reference nodes 
and the channel between the two communicating 
nodes is unknown and cannot be assumed linear. 
This motivates the use of DNN to extract the net-
work correlation and to predict the channel quality 
between the communicating nodes [13–15].

For the network correlation-based channel 
quality prediction, we design the fully connected 
DNN. The input information for DNN includes 
one of the following: 
1. Set of actual channel qualities between the 

communicating nodes and R reference nodes 
(communicating nodes A and B in Fig. 3)

2. Location information in a form of 3D coordi-
nates of both communicating nodes if such 
information is disclosed by these nodes as, 
e.g., in case of vehicular communications for 
autonomous driving (communicating nodes 
C and D in Fig. 3)

3. Combination of the location information of 
one communicating node and the channel 
qualities between the second communicat-
ing node and R reference nodes (communi-
cating nodes B and C in Fig. 3).
The locations of communicating nodes can 

substitute the channel quality to reference nodes 
in the input information for DNN, since even the 
channel qualities to reference nodes represent a 
sort of information on the communicating nodes’ 
locations. However, while the channel quali-
ty to reference nodes is known to the network, 
the location may not be always available due to 
privacy choices of users or due to absence or 
inaccuracy of localization systems. We compare 
performance of all three cases later.

The input information is fed to the input layer 
of DNN. The output of the input layer is processed 
via H hidden layers with Vh neurons in the h-th hid-
den layer. Experimentally, we have determined five 
hidden layers with 20, 18, 15, 12, and 8 neurons in 
respective hidden layers, as the setting leading to 
the highest prediction accuracy. The output of the 
last hidden layer is processed by the output layer 
with one neuron. This single neuron implements a 
linear activation function and returns the channel 
gain between the two communicating nodes. 

In Table 1, we summarize key aspects of 
machine learning inputs and outputs of individual 

FIGURE 3. Network correlation-based channel quality prediction.
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the stored information is used for the channel estimation when
the reference nodes (e.g., BSs) are in an energy saving mode
and the pilot signals are not transmitted [10]. Missing channel
qualities at the locations, where no measurement has been
done can be predicted from the stored channels exploiting the
spatial correlation and implemented via K-nearest neighbor
(KNN) supervised machine learning [10]. The KNN gives
a rough channel quality that can be further improved via a
convolutional neural network (CNN) [10]. The CNN is suitable
since the cell can be interpreted as pixel-like set of discrete
locations, where every location (or “pixel”) includes a number
representing the channel quality from this location to the
reference node. The area with the discrete pixel-like locations
can be seen as an image and CNN is known to perform well
in image-related prediction problems.

The spatial correlation is also used in [11], where the goal
is to build a radio map composed of the pairs of location
and channel quality (represented by path loss) to the reference
node (represented by the BS) similarly as the pixels in [10].
In [11], the channel quality to the reference node is known for
some locations and the rest of the unknown path losses to the
reference node from the remaining locations are predicted via
DNN. This way, the radio map is filled and the path losses to
the reference node for all locations in the map are determined.

The spatial correlation can also be used for prediction
of channel state information including complex channel ma-
trix and signaling overhead reduction in the networks with
Multiple-Input-Multiple-Output (MIMO) [12]. In this case,
instead of using the pilot signals to estimate the channel
matrices between all the antennas at the reference and commu-
nicating nodes, only the channels from a subset of antennas to
the communicating node are estimated conventionally via the
pilots. Then, the pilot estimated channel matrices are exploited
to predict the rest of the channel matrices from the remaining
antennas to the communicating node via linear regression and
support vector regression models [12].

III. NETWORK CORRELATION-BASED CHANNEL
PREDICTION

In previous section, the predicted channel is assumed to
be tightly coupled in time, frequency, or space to the known
channel(s). Such approach, however, does not allow to predict
channels seemingly disconnected from the known channels.
Hence, in this section, we focus on the problem of the channel
quality prediction between any two nodes based on a complex
relation among various information available in the network.
This approach targets prediction of a large scale fading for
radio resource management purposes.

In contrast to the approaches presented in the previous
section, the network correlation does not rely on proximity be-
tween communication nodes, historical channel quality, or the
communication frequency. Hence, the network correlation is of
a different nature and the channel quality in terms of the large-
scale fading is predicted from network-related information,
represented by channels of the communicating nodes to the
reference nodes, that share topology- and environment-based
commonalities with the predicted channels. This commonality

Fig. 3: Network correlation-based channel quality prediction.

leverages the fact that the channel between two communicating
nodes is correlated with the channels from these two nodes to
reference nodes. An example of the reference nodes is a set of
base stations surrounding the communicating nodes between
which the channel quality should be predicted. We illustrate
the principle of network correlation-based channel prediction
and, then, we discuss a possibility to enhance performance
by exploiting partially disclosed information on the users’
location.

To understand the network correlation, let us first imagine
a simple scenario in an open field without obstacles, where
the channel quality from any two communicating nodes (e.g.,
devices) to the neighboring reference nodes (e.g., BSs) is
estimated via pilot signals. The locations of these two com-
municating nodes are unique in terms of a representation via
the quality of channels from each communicating node to
the reference nodes similar to triangulation principle adopted
in navigation and positioning systems. The unique locations
of the two communicating nodes correspond to a specific
quality of the channel between these two nodes. Therefore, it
is expected that the channels from these two communicating
nodes to three reference nodes are enough to predict the
quality of the channel between the two communicating nodes.
However, this simple principle does not apply for a generic
environment with obstacles, where the relation between the
channels from two communicating nodes to the reference
nodes and the channel between the two communicating nodes
is unknown and cannot be assumed linear. This motivates
the use of DNN to extract the network correlation and to
predict the channel quality between the communicating nodes
[13][14][15].

For the network correlation-based channel quality predic-
tion, we design the fully connected DNN. The input informa-
tion for DNN includes one of the following:

i) set of actual channel qualities between the communicat-
ing nodes and 𝑅𝑅 reference nodes (communicating nodes
A and B in Fig. 3),

ii) location information in a form of 3D coordinates of both
communicating nodes if such information is disclosed by
these nodes as, e.g., in case of vehicular communications
for autonomous driving (communicating nodes C and D
in Fig. 3),
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state-of-the-art channel quality prediction includ-
ing the network correlation-based one and we 
also provide typical use-cases for each prediction 
to demonstrate their complementarity.

Signaling Overhead for 
Channel Quality Acquisition

The objective of the channel quality prediction 
is to reduce overhead related to channel quali-
ty measurement via pilot signals while predicted 
channel quality is as close to the real one as pos-
sible. We analyze and demonstrate the reduction 
in the number of transmitted and measured pilots 
achieved by individual presented prediction prin-
ciples exploiting various correlations with respect 
to conventional case where all channels are pilot-
based measurement in Fig. 4. 

First, let us look at the time correlation, which 
predicts the channel quality between two nodes 
in the future. According to experiments carried 
out in [5], the highest prediction accuracy is 
reacheed if the channel quality in future 10 time 
instances is predicted from the channel quality 

in the past 20 measured time instances. Conse-
quently, the signaling overhead reduction is 10/
(10 + 20)  33%.

The frequency correlation is typically exploited 
to predict the downlink channel quality from the 
uplink channel quality. Hence, the signaling over-
head is typically reduced by 50% (i.e., for every 
predicted downlink channel, one pilot-estimated 
uplink channel is required). 

The spatial correlation predicts the channel 
between the communicating node and subset A1 
of all antennas at the reference node (e.g., BS) 
from the pilot-estimated channels between that 
same communicating node and the subset A2 of 
remaining antennas as in [12]. According to [12] 
the number of antennas |A1| to which the chan-
nel is pilot-estimated is a function of the number of 
propagation paths in a multi-path channel model 
environment. For a common scenario with 128 
antennas at the reference node (|A1| + |A2| = 
128), the authors exploit known quality of chan-
nels from a single communicating node to |A1| 
= 26 antennas to predict the channels from that 
same communicating node to the remaining |A2| 
= 102 antennas. Consequently, the pilot transmis-
sion reduction for the channel prediction exploiting 
the spatial correlation in [12] is 102/128  80%.

Unlike for the spatial, time, and frequency cor-
relation-based predictions of channel quality, the 
reduction in the number of transmitted and mea-
sured pilots by the network correlation depends also 
on number of communicating nodes. Hence, lets 
consider N = C + R nodes in the network consisting 
of C communicating nodes (e.g., devices communi-
cating with each other) and R reference nodes (e.g., 
BSs in the area). The channels between C communi-
cating nodes to the R reference nodes are enough 
to predict all C(C – 1)/2 channels among all C com-
municating nodes. Hence, C  R channels should 
be pilot-estimated to predict all channels among all 
communicating nodes. Then, the network correla-
tion-based prediction reduces the number of pilot 
transmissions and measurements by

(C(C – 1)/2)/(C(C – 1)/2 + C  R).	 (1)

As demonstrated in [13], the number of required 
reference nodes is very low, typically three. For an 
example with 100 communicating nodes (C = 100) 
and three reference nodes (R = 3), the reduction is 
4950/(4950 + 300)  94%. The overhead savings 

FIGURE 4. Reduction in the number of transmitted and measured pilots to determine channel quality by various 
approaches.
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Fig. 4: Reduction in the number of transmitted and measured
pilots to determine channel quality by various approaches.

As demonstrated in [13], the number of required reference
nodes is very low, typically three. For an example with 100
communicating nodes (𝐶𝐶 = 100) and three reference nodes
(𝑅𝑅 = 3), the reduction is 4950/(4950 + 300) ≈ 94%. The
overhead savings are even more significant if one considers
thousands or even millions of communicating nodes per km2,
as expected in 6G [1].

As shown in Fig. 4, the network correlation-based channel
quality prediction is very efficient in scenarios with a high
density of communicating nodes, such as in vehicular or IoT
communication scenarios including, e.g., smart factories or
cities. Moreover, as indicated in the previous section, the
network correlation can also exploit partial knowledge on
location of some nodes and substitute pilot-estimated channel
quality between the communicating node and all reference
nodes with the location. Hence, we further investigate also an
impact of the known location(s) on the accuracy of channel
quality prediction in the next section.

V. IMPACT OF LOCATION INFORMATION AVAILABILITY ON
PERFORMANCE OF NETWORK CORRELATION-BASED

CHANNEL PREDICTION

To investigate the impact of known locations on channel
quality prediction accuracy, we simulate an urban area of
250 × 250 𝑚𝑚 with up to 1000 devices served by five BSs
positioned on rooftop of the buildings with a height randomly
generated between 20 and 30 meters and deployed regularly
in the area (see [13]). The path loss is generated in line with
3GPP TR 36.843 and we assume that the communication
channel intercepted by one or more building walls is exposed
to an additional loss of 10 dB per wall [13].

To indicate the prediction accuracy of the network cor-
relation, represented by a similarity between the true and
the predicted channel quality, we use Pearson correlation
coefficient (PCC). Note that PCC is widely adopted by various
machine learning-based approaches to indicate their prediction
accuracy.

Following three cases of the network correlation-based
channel quality prediction (illustrated in Fig. 3) are considered:
i) 𝑅𝑅𝑅𝑅 𝑅𝑅 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 − 𝑅𝑅𝑅𝑅 𝑅𝑅 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅, where the locations of commu-

nicating nodes are not known and, therefore, the pilot-

Fig. 5: Channel quality prediction accuracy (measured by
PCC) versus different numbers of learning samples for three
different cases of channel prediction exploiting network cor-
relation. SNR represents the error in channel quality measure-
ment.

estimated channels between the communicating nodes and
surrounding reference nodes are used as inputs to DNN.

ii) 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 − 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿, where the locations of all commu-
nicating nodes are known and are inputs to DNN.

iii) 𝑅𝑅𝑅𝑅 𝑅𝑅 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅−𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿, where the location of only a half of
the communicating nodes (one node in each communicating
pair) is known and inserted to DNN while, for the rest
of the nodes, the pilot-estimated channels between these
communicating nodes and the reference nodes are inputs to
DNN.
We also study different numbers of learning samples for

the DNN training to show the effect of the training on the
different use cases of the channel quality prediction exploiting
the network correlation. Furthermore, we consider a possible
error in the learning inputs representing inaccuracies in the
pilot-estimation or localization systems. To this end, we define
signal to noise ratio (SNR) representing the ratio between true
value of the input and an error in this input so that

𝑆𝑆𝑆𝑆𝑆𝑆 = 10𝑙𝑙𝑙𝑙𝑙𝑙10 (𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇/𝑒𝑒) [𝑑𝑑𝑑𝑑], (2)

for the error N(0𝑒𝑒 ). When SNR is equal to infinite (𝑆𝑆𝑆𝑆𝑆𝑆 =
inf), the inputs (pilot-based measured channel quality or
locations) are with no error.

In Fig. 5, we observe that PCC increases promptly with the
number of learning samples until about 10.000 samples, when
the increase slows down and becomes marginal. We also see
that the reached PCC is high for the different simulated cases
even if the learning inputs are impacted heavily with a high
error (e.g., for SNR of 10 dB). Moreover, with higher error,
the Location-Location prediction outperforms the Reference-
Location as well as the Reference-Reference. This is explained
by the nature of the network correlation itself. In fact, when the
channels between the communicating node and surrounding
reference nodes are available, the prediction relies on the
hidden relation between these gains and the locations of this
communicating node and, consequently, the quality of the
direct channel to the other communicating nodes. However, if

TABLE 1. Summary of machine learning-based channel prediction approaches and related use-cases.

Learning tool Learning Inputs Learning Output Typical use-case

Time 
Correlation

RNN Previous quality of channels between 
two nodes

Future quality of channel 
between the two nodes

Prediction of future channel quality

Frequency 
Correlation

DNN Quality of channel between two nodes 
at a specific frequency

Quality of channel between 
two nodes at another fre-
quency

Prediction of UL channel quality from DL 
channel quality (or vice versa) of one com-
municating node, prediction of channel qual-
ity in high frequency bands (e.g., mmWave) 
from channel in low frequency bands

Spatial 
Correlation

KNN+CNN, 
DNN

Quality of channel between two node-
sLocations and proximity of one of the 
nodes and a third node

Quality of channel between 
two nodes

Prediction of channel quality for multi-an-
tenna systems

Network 
Correlation

DNN Quality of channels from the communi-
cating nodes to the reference nodes or 
location of the communicating nodes

Quality of channel between 
the two nodes

Prediction of channel quality between two 
communicating nodes from already known 
channels to other nodes, e.g., communica-
tion among vehicles
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are even more significant if one considers thou-
sands or even millions of communicating nodes 
per km2, as expected in 6G [1]. 

As shown in Fig. 4, the network correla-
tion-based channel quality prediction is very 
efficient in scenarios with a high density of com-
municating nodes, such as in vehicular or IoT 
communication scenarios including, e.g., smart 
factories or cities. Moreover, as indicated in the 
previous section, the network correlation can also 
exploit partial knowledge on location of some 
nodes and substitute pilot-estimated channel 
quality between the communicating node and 
all reference nodes with the location. Hence, we 
further investigate also an impact of the known 
location(s) on the accuracy of channel quality pre-
diction in the next section. 

Impact of Location Information Availability on 
Performance of Network Correlation-Based 

Channel Prediction
To investigate the impact of known locations on 
channel quality prediction accuracy, we simulate 
an urban area of 250  250 m with up to 1000 
devices served by five BSs positioned on rooftop 
of the buildings with a height randomly generated 
between 20 and 30 meters and deployed regular-
ly in the area (see [13]). The path loss is generat-
ed in line with 3GPP TR 36.843 and we assume 
that the communication channel intercepted by 
one or more building walls is exposed to an addi-
tional loss of 10 dB per wall [13]. 

To indicate the prediction accuracy of the 
network correlation, represented by a similarity 
between the true and the predicted channel qual-
ity, we use Pearson correlation coefficient (PCC). 
Note that PCC is widely adopted by various 
machine learning-based approaches to indicate 
their prediction accuracy.

Following three cases of the network correla-
tion-based channel quality prediction (illustrated 
in Fig. 3) are considered: 
1. Reference – Reference, where the locations 

of communicating nodes are not known 
and, therefore, the pilot-estimated channels 
between the communicating nodes and sur-
rounding reference nodes are used as inputs 
to DNN.

2. Location-Location, where the locations of all 
communicating nodes are known and are 
inputs to DNN.

3. Reference-Location, where the location of 
only a half of the communicating nodes (one 
node in each communicating pair) is known 
and inserted to DNN while, for the rest 
of the nodes, the pilot-estimated channels 
between these communicating nodes and 
the reference nodes are inputs to DNN.
We also study different numbers of learning 

samples for the DNN training to show the effect 
of the training on the different use cases of the 
channel quality prediction exploiting the network 
correlation. Furthermore, we consider a possible 
error in the learning inputs representing inaccura-
cies in the pilot-estimation or localization systems. 
To this end, we define signal to noise ratio (SNR) 
representing the ratio between true value of the 
input and an error in this input so that

SNR = 10 log10(TrueValue/e) [dB],	 (2)

for the error N (0, e). When SNR is equal to 
infinite (SNR = inf), the inputs (pilot-based mea-
sured channel quality or locations) are with no 
error.

In Fig. 5, we observe that PCC increases 
promptly with the number of learning samples 
until about 10.000 samples, when the increase 
slows down and becomes marginal. We also see 
that the reached PCC is high for the different 
simulated cases even if the learning inputs are 
impacted heavily with a high error (e.g., for SNR 
of 10 dB). Moreover, with higher error, the Loca-
tion-Location prediction outperforms the Refer-
ence-Location as well as the Reference-Reference. 
This is explained by the nature of the network cor-
relation itself. In fact, when the channels between 
the communicating node and surrounding ref-
erence nodes are available, the prediction relies 
on the hidden relation between these gains and 
the locations of this communicating node and, 
consequently, the quality of the direct channel 
to the other communicating nodes. However, if 
the location information is available, the relation 
between the location and the channel quality is 
straightforward and easier to learn. 

Furthermore, in Fig. 5, we also observe that the 
lower the error in the learning inputs, the lower 
difference among PCC of the three investigated 
cases. This allows us to state that the higher the 
accuracy of the pilot-estimated channels between 
the communicating and reference nodes during 
the learning and inference phases, the higher the 
effectiveness of the network-correlation based 
prediction in terms of prediction accuracy. 

Conclusion
In this article, we have surveyed the different 
channel quality prediction approaches based on 
machine learning to reduce number of transmit-
ted and measured pilots for the channel quality 

FIGURE 5. Channel quality prediction accuracy (measured by PCC) versus different numbers of learning samples for 
three different cases of channel prediction exploiting network correlation. SNR represents the error in channel 
quality measurement.

6

Fig. 4: Reduction in the number of transmitted and measured
pilots to determine channel quality by various approaches.

As demonstrated in [13], the number of required reference
nodes is very low, typically three. For an example with 100
communicating nodes (𝐶𝐶 = 100) and three reference nodes
(𝑅𝑅 = 3), the reduction is 4950/(4950 + 300) ≈ 94%. The
overhead savings are even more significant if one considers
thousands or even millions of communicating nodes per km2,
as expected in 6G [1].

As shown in Fig. 4, the network correlation-based channel
quality prediction is very efficient in scenarios with a high
density of communicating nodes, such as in vehicular or IoT
communication scenarios including, e.g., smart factories or
cities. Moreover, as indicated in the previous section, the
network correlation can also exploit partial knowledge on
location of some nodes and substitute pilot-estimated channel
quality between the communicating node and all reference
nodes with the location. Hence, we further investigate also an
impact of the known location(s) on the accuracy of channel
quality prediction in the next section.

V. IMPACT OF LOCATION INFORMATION AVAILABILITY ON
PERFORMANCE OF NETWORK CORRELATION-BASED

CHANNEL PREDICTION

To investigate the impact of known locations on channel
quality prediction accuracy, we simulate an urban area of
250 × 250 𝑚𝑚 with up to 1000 devices served by five BSs
positioned on rooftop of the buildings with a height randomly
generated between 20 and 30 meters and deployed regularly
in the area (see [13]). The path loss is generated in line with
3GPP TR 36.843 and we assume that the communication
channel intercepted by one or more building walls is exposed
to an additional loss of 10 dB per wall [13].

To indicate the prediction accuracy of the network cor-
relation, represented by a similarity between the true and
the predicted channel quality, we use Pearson correlation
coefficient (PCC). Note that PCC is widely adopted by various
machine learning-based approaches to indicate their prediction
accuracy.

Following three cases of the network correlation-based
channel quality prediction (illustrated in Fig. 3) are considered:
i) 𝑅𝑅𝑅𝑅 𝑅𝑅 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 − 𝑅𝑅𝑅𝑅 𝑅𝑅 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅, where the locations of commu-

nicating nodes are not known and, therefore, the pilot-

Fig. 5: Channel quality prediction accuracy (measured by
PCC) versus different numbers of learning samples for three
different cases of channel prediction exploiting network cor-
relation. SNR represents the error in channel quality measure-
ment.

estimated channels between the communicating nodes and
surrounding reference nodes are used as inputs to DNN.

ii) 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 − 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿, where the locations of all commu-
nicating nodes are known and are inputs to DNN.

iii) 𝑅𝑅𝑅𝑅 𝑅𝑅 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅−𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿, where the location of only a half of
the communicating nodes (one node in each communicating
pair) is known and inserted to DNN while, for the rest
of the nodes, the pilot-estimated channels between these
communicating nodes and the reference nodes are inputs to
DNN.
We also study different numbers of learning samples for

the DNN training to show the effect of the training on the
different use cases of the channel quality prediction exploiting
the network correlation. Furthermore, we consider a possible
error in the learning inputs representing inaccuracies in the
pilot-estimation or localization systems. To this end, we define
signal to noise ratio (SNR) representing the ratio between true
value of the input and an error in this input so that

𝑆𝑆𝑆𝑆𝑆𝑆 = 10𝑙𝑙𝑙𝑙𝑙𝑙10 (𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇/𝑒𝑒) [𝑑𝑑𝑑𝑑], (2)

for the error N(0𝑒𝑒 ). When SNR is equal to infinite (𝑆𝑆𝑆𝑆𝑆𝑆 =
inf), the inputs (pilot-based measured channel quality or
locations) are with no error.

In Fig. 5, we observe that PCC increases promptly with the
number of learning samples until about 10.000 samples, when
the increase slows down and becomes marginal. We also see
that the reached PCC is high for the different simulated cases
even if the learning inputs are impacted heavily with a high
error (e.g., for SNR of 10 dB). Moreover, with higher error,
the Location-Location prediction outperforms the Reference-
Location as well as the Reference-Reference. This is explained
by the nature of the network correlation itself. In fact, when the
channels between the communicating node and surrounding
reference nodes are available, the prediction relies on the
hidden relation between these gains and the locations of this
communicating node and, consequently, the quality of the
direct channel to the other communicating nodes. However, if
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acquisition in future mobile networks with many 
communicating nodes. Furthermore, we have 
outlined the concept of machine learning-based 
channel prediction exploiting the advanced net-
work correlation. We have demonstrated com-
plementarity of this approach to the frequency, 
time, and spatial correlation-based predictions. 
Besides, we have shown a high accuracy of the 
network correlation-based channel quality predic-
tion in generalized scenario even if communicat-
ing nodes’ private information on location is not 
disclosed by the users. We have also quantified 
the reduction in the transmission and measure-
ment of pilots for the different types of channel 
quality prediction underpinning their benefits and 
limits. The machine learning-based channel pre-
diction exploiting network correlation cuts down 
more than 90% of the overhead generated by 
conventional pilot-based approach for scenario 
with a high number of communicating nodes. This 
makes the channel prediction exploiting network 
correlation a suitable approach for 6G mobile 
networks with a massive amount of nodes com-
municating with each other.
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