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Abstract—Autonomous mobility and computations provided
for passengers impose a high hardware and energy consumption
related costs when deployed locally on connected autonomous
vehicle (CAV). Distribution of resources for computation accross
the edge of mobile network by means of multi-access edge
computing (MEC) allows to reduce the cost of the CAVs. However,
the decision on computation offloading and allocation of resources
for computing is itself a computationally complex task. Existing
works typically do not fully exploit the potential of machine
learning by combining novel advances in deep reinforcement
learning (DRL) and graph neural networks (GNNs) that are
suited for graph structure of the MEC. We propose a novel
framework combining GNNs with deep deterministic policy
gradient (DDPG) variant of DRL. The proposed concept is tested
in environment with simulated gNodeBs, CAVs and execution
of actions that simultaneously trade off uplink and processing
resources and control the soft deadline buffer. In scenario
with one base station and 12 CAVs our approach outperforms
commonly used multilayer perceptron DDPG by 59% in terms
of failed task ratio metric. Additionally, in scenario with 3 base
stations and 25 CAVs, the proposal reaches over 33% for the
same metric over round robin (RR) distribution.

Index Terms—autonomous mobility, multi-access edge comput-
ing, resource allocation, graph neural network, DDPG

I. INTRODUCTION

Autonomous mobility can transform society by improving
transportation, urban planning, and environment. According
to the Deloitte report [1], most experts expect autonomous
vehicles to be widely adopted after 2030. Dubey et al. [2]
predict that they will capture 50% of the market in 18 years
and 80% in 31 years. Autonomous vehicles need a high
computing power for self-driving and other functions. Putting
such resources on connected autonomous vehicles (CAVs)
raises costs and energy consumption, and reduces the vehicle’s
driving range.

Higher computing power enhances self-driving cars’ accu-
racy, reliability, latency and safety. Using remote servers, ve-
hicles can achieve otherwise impossible improvements. Multi-
access edge computing (MEC) is a good solution for CAV mo-
bility, which needs fast computing and communication. MEC
does computation and data processing at the network edge,
near the data source. However, MEC also poses challenges for
resource allocation, as the CAVs have to allocate the resources
effectively among them and the MEC servers.

Energy-efficient allocation for computing and caching in
cellular networks is the topic of study in [3]. The authors
use deep deterministic policy gradient (DDPG) to solve the
problem with RL and show over 15% energy saving and
timely task processing. In [4], deep reinforcement learning
(DRL) and TD3 form the basis for computation offloading
and resource allocation algorithm, to optimize MEC offloading
and allocation for internet of vehicles (IoV) with different
computational tasks. The algorithm achieves better delay,
cost, speed, and stability. The research in [5] also uses DRL
with TD3, but tackles optimization of latency and power by
dynamically allocating MEC resources. The action decides
whether to send the task to MEC and CPU and communication
resource use. In [6] authors use multi-agent deep deterministic
policy gradient (MADDPG) model to decide MEC or gNB
offloading and allocation. The agent influences the neighboring
gNBs’ actions.

Graph neural network (GNN) and DRL are used in [7]
and [8] to model the network as a graph and use GNN to
get node and link features. In [7] this approach minimizes
latency by choosing MEC or local computing, while in [8]
it assigns spectrum for D2D communication in vehicular
networks. Works in [9] and [10] use supervised and semi-
supervised GNN learning respectively. In [9] GNN is trained
with samples from a suboptimal constraint cross-entropy
method for resource allocation, while in [10] some devices
have fixed gNB connections to serve as supervision labels,
to train the model for power and gNB selection in densely
connected networks

Review in [11] surveys GNNs in wireless networks and finds
many works on power, channel, or spectrum allocation, but
few on computation and communication allocation. RL learns
optimal policies from trial-and-error, while GNNs handle well
the graph data and dependencies. MEC networks have inherent
graph structure and GNNs can represent and extract their
features. But most works on MEC resource allocation use RL
or GNNs separately, or for different aspects.

The main contributions of this paper are summarized as
follows:

1) We propose a novel GNN and DDPG method for com-
puting resource allocation in VEC.



2) We describe novel ways to combine GNN and DRL for
control tasks with graph states. Such combination can
be also applied to problems beyond resource allocation.

3) We demonstrate that our method improves performance
metrics compared to related works for various scenarios
with different simulation settings, such as number of
gNBs, CAVs, size of tasks, and deadline constraints.

II. SYSTEM MODEL

This paper aims to compute tasks within the designated
deadline tdeadline,i, indicated for the specific task indexed as i.
When allocating resources, tdeadline,i is not directly utilized;
instead, the adjustment is made using the soft task deadline
tsoft deadline,i to account for environmental unpredictability.
tsoft deadline,i is calculated as follows:

tsoft deadline,i = tdeadline,i (1− ϵi), (1)

where ϵi∈ ⟨0, 1⟩ is the tsoft deadline,i contraction factor that
shortens the tsoft deadline,i relative to tdeadline,i.

The total time for transmitting the i-th task to the server,
computing it, and sending the response back to CAV is denoted
as ttotal,i. If the server response size is small enough to be
negligible, ttotal,i can be calculated as:

ttotal,i = tuplink,i + tprocess,i, (2)

where tuplink,i is the uplink time and tprocess,i is the processing
time for the i-th task.

Resource distribution is determined according to partial
soft deadlines tsoft uplink,i for uplink and tsoft process,i for
processing, from tsoft deadline,i as:

tsoft uplink,i = ωi tsoft deadline,i,

tsoft process,i = (1− ωi) tsoft deadline,i,
(3)

where ωi is a parameter that specifies the resource split ratio.
Once specific ωi is chosen, required uplink throughput and
computational resources that will satisfy both soft deadlines
can be calculated. The following formula is used to calculate
the uplink data rate between CAV u and gNB s at time t:

Ru,s(t) = βu(t)ρu(t)fs(t)nRB,u,s(t), (4)

where βu is the number of bits per symbol, ρu is the code
rate, fs is the modulation rate, and nRB,u,s(t) expresses the
number of resource blocks allocated by the s-th gNB for the u-
th CAV. The values of βu(t) and ρu(t) are determined from the
measured signal-to-noise (SINR) value at CAV coordinates,
with mapping table available in [12]. fs can be calculated from
number of resource elements available in a single resource
block.

Equation (4) can be modified to get the required number of
resource blocks nRB,u,s to achieve the desired data rate:

nRB,u,s(t) =
⌈ Ru,s(t)

βu(t)ρu(t)fs(t)

⌉
. (5)

The time tsoft uplink,i is known and it can be used to calculate
the desired data rate as follows:

Ru,s(t) = Di/tsoft uplink,i(t), (6)

where Di is the size of the task in megabits at upload.
The CPU capacity of MEC resources will be expressed in

instructions per second (IPS) unit. The required CPU resources
for a task that should be processed by time tsoft process,i are
calculated as follows:

ICPU,u,s = Ii/tsoft process,i, (7)

where Ii is the number of instructions needed to compute the
i-th task on the CPU.

Our simulations use two metrics that are also used to
measure the service quality and for our objective function on
which models are trained. The first metric represents ratio of
failed tasks, i.e., tasks not completed within the deadline, and
is defined as

MFT =
NFT

NGT
, (8)

where NFT is the total number of failed tasks that exceeded
the allowed latency tdeadline,i, thus do not fulfill the constraint
ttotal,i ≤ tdeadline,i and NGT is a total number of generated
tasks.

The second metric, denoted as ML, is an average latency,
expressing the average ratio of ttotal,i to tdeadline,i for all
tasks. Now the multicriterial objective function that takes into
account both MFT and ML can be defined as:

P1 : min
NCAV,Di,Ii

(
MFT,ML

)
(9)

s.t.:
C1.1 :

∑
u

nRB,u,s(t) ≤ NRB,s,

C1.2 :
∑
u

ICPU,u,s(t) ≤ ICPU,s,

C1.3 : 0 < ωi < 1

C1.4 : 0 < ϵi < 1,

where C1.1 defines the limit of assigned resource blocks
in time t, so that it does not exceed the maximal number
of RBs of s-th gNB, C1.2 defines limitation of assigned
CPU resources in time t, so that they will not exceed the
total amount of CPU resources of s-th gNB, C1.3 limits the
resource distribution ratio ωi for i-th task so that resource
assignment stays in ⟨0%, 100%⟩ range and C1.4 indirectly
limits the soft deadline ratio tsoft deadline,i.

III. PROPOSED APPROACH

Our approach uses transformation of a network state graph
by graph convolutional network (GCN) [13] layer to obtain
abstract features for the DDPG agent. GCN layer aggregates
attributes of vertex and its neighbors. If all vertices are
interconnected, like all CAVs connected to the same gNB,
GCN gives identical vectors for all of them.

The xu feature vector of the u-th CAV has the following
form:

xu = (sinru, sinrold,u, nRB,u,s, ICPU,u,s), (10)



where sinru is the current measured value of SINR of the u-th
CAV, sinrold,u is the SINR value measured in previous time
step, nRB,u,s and ICPU,u,s are the current reserved number
of resource blocks and the current reserved CPU computation
power, respectively.

The reward function is defined as follows:

ru(t) =

{
NCT,s(t), if NFT,s > 0

NCT,s(t) (1 + Ls(t)), else
(11)

where NCT,s(t) is the number of all processed tasks of CAVs
connected to s-th gNB in time interval t and Ls(t) represents
the average ratio of time needed to compute the task to the
overall time limit for task processing.

Now that our metrics and reward calculation that guide
the model training are introduced, our DDPG implementation
can be described. DDPG algorithm consists of replay buffer,
actor, critic, and their target networks. Replay buffer saves
(s,a,r,s′,d) tuples for state, action, reward, next state, and
binary d, that equals True if s′ is terminal. gNBs constantly
record and store these tuples into replay buffer.

We also use GCN layer as feature extractor for actor and
critic. It converts graph state of gNB and CAVs to feature
vector. First, GCN generates feature vectors for all relevant
network nodes, denoted as h1 . . .hn. We use the node vectors
to make state vector h by aggregation and concatenation, h
is be passed to densely connected layers of the deep neural
network (DNN) to finally generate either action in case of actor
network, or state-action evaluation, in case of critic network.

For the actor, aggregated node vectors are extended as

h = concat (aggr (h1, . . . ,hn) ,x) , (12)

where concat denotes the vector concatenation function, aggr
denotes the vector aggregation function and x is a feature
vector of specific CAV. Concatenation of x ensures that state
vector for each CAV requiring control by actor will be unique
and CAV-specific information will be reintroduced.

Critic obtains h in the same manner, but since it evaluates
state-action pair, it adds action tuple to the concatenation as

h = concat (aggr (h1, . . . ,hn) ,x, a) . (13)

Our GNN CAV approach lets each CAV to execute ωi sep-
arately. It thus works for any number of CAVs. We use one
critic for all gNBs, but each gNB has its own actor. Actor
and critic weights are updated in the cloud and shared with
all gNBs.

The DDPG agent trains on a randomly sampled batch B
from memory buffer. The target actor and target critic models
respectively generate and evaluate actions for new states. The
state-action pair value determined by target critic is used to
compute the target value. With access to state of gNB and
feature vectors of CAVs and features, the agent can allocate
MEC resources individually for each CAV and should perform
more optimally over uniform distribution.

TABLE I: Simulation settings

Parameter Value
∆tT 0.5 s
tdeadline,i 0.1 s
NgNB 1, 2, 3, 4, 5
NRB,s (number of RBs per gNB) 1000
v (CAV speed) ⟨35, 50⟩ km/h
Di 0.1 MB
Ii 10 MI
ICPU,s 3 ∗ 109 IPS
Pt 0.01 W
ft 2 ∗ 109 Hz

IV. SIMULATION RESULTS

We simulate CAV mobility on a 200 × 200 m grid of
streets. CAVs pick random destinations after reaching one.
The model contains NgNB gNBs with MEC servers and NCAV

CAVs that send tasks to MEC network. We only consider task
computation on gNB connected to CAV, without possibility
of computing them locally on CAV. Simulation steps generate
tasks, collect results, and update agent rewards.

Throughout the simulation scope the performance char-
acteristics of the proposed method denoted as GNN CAV
performing resource allocation action at the level of CAVs
using GNN are provided. Monte Carlo simulations are used
with settings in Table I. Each step is 0.5 s and generates
five tasks. gNB number varies up to five. We adjust gNB
parameters like NgNB, NRB,s, and task parameters for smaller
environments and fewer CAVs so that in certain situations
there are still insufficient MEC resources for all CAVs, to test
different network loads.

A. Baselines

We compare our approach with other resource allocation
methods, including DL ones.

Round robin (RR) : RR distributes MEC resources equally
among CAVs on the same gNB.

NN CAV: NN CAV uses DDPG without GNN and allo-
cates resources at CAV level. It is similar to approach in [14].
The state has features of all CAVs and the action is separate
for each CAV. It works only for fixed gNB and CAV numbers,
therefore we use it only in some plotted scenarios.

GNN gNB: GNN gNB uses DDPG with GNN at gNB
level. It gives the same VEC resources to all CAVs on the
same gNB.

B. Single gNB in the environment

This section describes the simulation results of a simplified
scenario involving a single gNB. Table II illustrates the propor-
tion of failed tasks MFT and latency metric ML across various
scenarios with different numbers of CAVs, as a comprehensive
performance comparison of the evaluated methods. Agents act
with action space a = (ωi, ϵi), influencing resource allocation
(ωi) and latency (ϵi). We study the average failed tasks (MFT)
and latency (ML). The setup parameter tdeadline,i sets the
maximum delay of 0.09 seconds, plus 0.01 seconds as a buffer
accounting for unpredictability of future resource load levels.



With 7 CAVs and enough resources, all methods have MFT

close to 0. With 12 CAVs and more failed tasks due to higher
resource load, RR performs notably worse than NN CAV,
while GNN CAV performs better than NN CAV, but worse
than GNN gNB. The MFT value of 0.043 for GNN CAV in
this scenario is nearly double that of GNN gNB. With 15
CAVs and higher load, GNN CAV has the lowest MFT of
0.213, followed by GNN gNB with MFT of 0.228, while RR
falls behind all other approaches.

In conclusion, scenarios featuring more CAVs require
more advanced approaches for maintaining network reliability.
Among the tested methods, proposed method GNN CAV
emerges as the most effective in terms of MFT, providing
the best performance results.

GNN gNB algorithm achieves the average latency of 0.052s
in the scenario with 7 CAVs with other methods achieving
very similar values. In setting with 12 and 15 CAVs ML of
GNN gNB, GNN CAV and NN CAV approach to a maxi-
mum possible value of 0.09s. The findings manifest that RR
attains the most favorable mean latency performance compared
to the alternative tested methodologies but at the expense of
worse failed task ratio for settings with higher NCAV.

TABLE II: (MFT) and average (ML) for action a = (ωi, ϵi)

NCAV RR GNN gNB GNN CAV NN CAV
MFT ML MFT ML MFT ML MFT ML

7 0.000 0.048 0.003 0.052 0.004 0.049 0.002 0.051
12 0.173 0.073 0.028 0.090 0.043 0.084 0.069 0.089
15 0.390 0.082 0.228 0.090 0.213 0.090 0.271 0.090

C. Multiple gNBs in the environment

Real-world scenarios often include multiple gNBs. Thus,
we have trained and tested agents in multi-gNB scenarios
to evaluate the impact of environment properties on GNN’s
training. Agents were trained with 3 gNBs and 15 or 25 CAVs,
and tested with varying numbers of gNBs and CAVs. NN CAV
was not used as it cannot handle different numbers of CAVs.

Simulation results from scenarios with agents executing
actions a = (ω, ϵ) for varying number of CAVs in the
environment are shown in Fig. 1. It displays the impact of
the number of CAVs in the environment with 3gNBs on the
MFT and ML metric of RR algorithm and two variants of
each GNN CAV and GNN gNB (variants were trained in
the environment with number of CAVs fixed to 15 and 25
respectively, shown in the brackets). It is clear, that in terms of
MFT, GNN-based approaches have significant advantage over
the RR in each setting. GNN CAV(25) has the lowest average
MFT across the majority of tested scenarios. Experiments also
show, that agent variants trained with more CAVs present show
improved relative performance compared to RR.

In general, more CAVs also result in higher average latency.
RR algorithm significantly outperforms its counterparts in
terms of ML metric but at the expense of a less favorable
MFT. Similarly, the GNN CAV(15) demonstrates lower ML

than other GNN-based methods thus is unable to capital-
ize on the soft deadline to redistribute resources in more

optimal manner, a capability that both GNN CAV(25) and
GNN gNB(25) leverage effectively with the average latency
ratio of ML = 0.9.
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Fig. 1: Effects of action a = (ω, ϵ) with 3 gNBs and different
number of CAVs: (a) MFT dependence on CAV number, (b)
ML dependence on CAV number

Fig. 2 shows the impact of number of gNBs on MFT

and ML in settings with agents executing resource allocation
action and soft deadline determination action a = (ω, ϵ) and
with CAV number fixed to 15. In general, rising number of
gNBs present in environment decreases both the MFT and
the ML. GNN CAV(25) shows superior results in terms of
average ratio of failed tasks. As for the average latency ratio
ML, RR and CNN CAV(15) outperform other approaches
at the expense of MFT. Again, both GNN CAV(25) and
GNN gNB(25) have the average latency ratio ML = 0.9
which equals the value of soft deadline.
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Fig. 2: Effects of action a = (ω, ϵ) with 15 CAVs and different
number of gNBs: (a) MFT dependence on gNB number, (b)
average ML dependence on gNB number

V. CONCLUSION

This work proposes novel GNN algorithms for VEC re-
source allocation. Their performance is comprehensively com-
pared with RR and NN CAV methods using extensive Monte
Carlo simulations. The findings demonstrate the superiority
of both proposed GNN-based algorithms. This translates to
savings in operational cost, improved QoS and MFT task
metric. More CAVs during the training improve GNN results
relative to other approaches.
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