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Abstract—The Unmanned Aerial Vehicles (UAVs) acting as
relays in the mobile networks are usually energy constrained.
To improve the energy efficiency of such networks, UAVs should
operate in a transparent relaying mode. In such mode, however,
the channel quality between users and UAVs cannot be measured,
since the transparent relays do not transmit own signaling. A
lack of information on the quality of channel between users and
UAVs limits practical implementation and is serious restraint for
mobility management. To overcome this limitation, we develop a
novel concept of coordinated machine learning for handover of
users and UAVs in the mobile networks with transparent relaying
UAVs. First, we predict the channel quality from other known
information in the network via deep neural network (DNN). Such
predicted channel quality is then fed into deep reinforcement
learning (DRL) for an adjustment of handover parameter – cell
individual offset (CIO). Unfortunately, a simple concatenation
of the DNN and the DRL leads to a notable performance
degradation. Hence, we propose a coordination of the DNN
for channel quality prediction and the DRL for CIO setting.
The coordination consists in a mutual exchange of performance-
related information and an update of DNN according to a reward
of DRL. The proposal increases the sum capacity by up to 12.7%
while reducing the number of user and UAV handovers by up to
12.9% and 16.4%, respectively, compared to related works.

Index Terms—6G, channel quality, coordination, handover,
machine learning, mobility management, UAV

I. INTRODUCTION

The Unmanned Aerial Vehicles (UAVs) acting as relays are
seen as a promising solution to provide connectivity for user
equipments (UEs) in the future mobile networks due to a high
dynamicity and flexibility of the UAVs’ deployment. An inte-
gration of the UAVs to the mobile networks, however, imposes
new challenges related to mobility management. The reason
is that not only the UEs, but also the UAVs themselves, are
inherently mobile. Thus, the UEs’ connection to conventional
ground base stations (GBSs) should be also managed jointly
with the connection of the UEs to the UAVs or to the GBSs
[1], [2]. Besides, the trajectory of the UAVs serving the UEs is
arbitrary and difficult to predict, as the UAVs’ position depends
on an unpredictable movement of the UEs. Consequently, the
quality of the channels between GBSs and UAVs as well as
between UEs and GBS or UAV can change rapidly. This leads
to frequent handovers or even to a handover failures [2].
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In a conventional terrestrial networks, the handover of UE
is initiated if the GBS to which the handover should be
performed (target GBS) offers a higher channel quality than
a current serving GBS. However, such approach can result
in frequent handovers and, consequently, to high signaling
overhead, connection interruption, or excessive energy con-
sumption. Hence, the handover is postponed until the received
signal strength from the target GBS is by an offset and/or
hysteresis above the signal strength from the serving GBS
for a period of time known as time-to-trigger (TTT) [3], [4].
Setting of the handover parameters is optimized, e.g., in [5]–
[7] to balance between a mitigation of redundant handovers
and a sum capacity offered to the UEs for the networks with
static GBSs. However, the movement of the UAVs leads to
unpredictable changes in the network topology and the existing
solutions for UEs’ handover among GBSs are not able to cope
with these changes [1].

Although the handover of UAVs is addressed, e.g., in [9]–
[11], these works assume the UAVs in a role of the UEs with
known future trajectory. Thus, the challenges related to the
unknown future trajectory of the UAVs serving the UEs are
not addressed in [9]–[11]. The handover for the UAVs serving
the UEs is tackled in our prior work [1], where we develop
a framework for a dynamic setting of a cell individual offset
(CIO) for the GBSs and the UAVs to increase the sum ca-
pacity of the served UEs while avoiding redundant handovers.
However, the UAVs are in non-transparent mode carrying out
all communication-related control and management functions
as the traditional GBSs. Such comprehensive management
leads to a high complexity, weight, and energy consumption
[12], making the non-transparent relaying impractical for the
energy-constrained UAV relays.

For the UAVs serving the UEs, a transparent relaying is
seen as a suitable choice due to low complexity of such relays
[13]. Thus, in this paper, we focus on the transparent UAV
relays. Unfortunately, the transparent relays do not transmit
own reference signals for channel quality measurement and
these signals are sent to the UEs directly by the GBS [12]–
[15]. As a result, the quality of the channels between the
transparent relay and the UEs cannot be measured. This is
a serious barrier for practical deployment of the transparent
UAV relays [15].



To enable deployment of the transparent UAV relays, the
channel quality between the UEs and the transparent UAVs for
handover of UEs as well as UAVs can be predicted via deep
neural network (DNN), as proposed in [16]. Such predicted
channel quality can be fed into any solution for setting of
CIO or other handover parameters. The optimization of the
handover parameters at the current time impacts performance
in the future. Hence, the optimal handover decision requires
knowledge of the (long-term) future channel qualities. Since
the future channel qualities are not known and cannot be
determined in practice, deep reinforcement learning (DRL) is
a suitable tool to learn the handover parameters for the GBSs
and the UAVs serving the UEs.

To enable feasible handover of the transparent UAVs serving
the UEs, both the DNN-based channel prediction and DRL-
based handover optimization are mandatory and cannot be eas-
ily substituted by classical (non-machine learning) approaches.
Nevertheless, even if both machine learning approaches can
reach a high accuracy on their own, their independent deploy-
ment leads to a degradation in the overall performance. Such
degradation is a result of a multiplication and an accumulation
of the errors in DNN-based channel quality prediction and in
DRL-based handover optimization.

Therefore, motivated by the practical challenges of handover
decision in the networks with the energy efficient UAV relays
in transparent mode, we propose a coordination of the machine
learning-based solutions for the channel quality prediction
(based on DNN) and handover optimization (based on DRL),
to manage the handover of both the UEs and the transparent
UAVs. To mitigate the performance degradation due to an
independent deployment of both machine learning solutions,
we develop an intelligent handover management framework
facilitated via a coordinated DNN for channel quality predic-
tion and DRL for CIO setting so that the overall accumulated
learning error is minimized and, thus, the performance is
improved. We demonstrate that the proposed coordination of
the machine learning tools leads to increased sum capacity
of the UEs (by up to 12.7%) and, at the same time, reduced
number of handovers of UEs and UAVs (by up to 12.9% and
16.4%, respectively) compared to state-of-the-art works.

The rest of paper is structured as follows. First, we define
system model and assumptions adopted in our paper. Then, we
formulate the problem and discuss related challenges in Sec-
tion III. Next, the proposed concept is described and compared
with related works in Sections IV and V, respectively. The last
section concludes the paper and outlines future directions.

II. SYSTEM MODEL

We consider a set N = {n1, n2, . . . , nN} of the UEs
deployed in an area covered by the sets G = {g1, g2, . . . , gG}
of GBSs and by the set F = {f1, f2, . . . , fF } of the UAVs
acting as flying base stations (see Fig. 1). The UEs change their
position over time and the positions of the UAVs are adjusted
according to the actual position of the served UEs. Since
our proposed work is independent of the UAVs’ positioning,
we assume the UAVs follow the center of gravity of the

Fig. 1. System model with GBSs and transparent UAVs serving mobile UEs.

served UEs as, e.g., in [1]. Each UE can be served by any
of K = G + F = {k1, . . . , kG, kG+1, . . . , kK} base stations
(BSs) encompassing the GBSs and the UAVs, i.e., K = F+G.
We define a binary variable βUE

n,k , which indicates if the n-th
UE is connected to the k-th BS (βUE

n,k = 1) or not (βUE
n,k = 0).

Furthermore, the variable βUAV
f,g indicates if the f -th UAV is

connected to the g-th GBS (βUAV
f,g = 1) or not (βUAV

f,g = 0).
The connection of the UEs to the BSs and the connection of

the UAVs to the GBSs change over time as the handovers of
UEs and UAVs are performed. For the handover triggering, we
follow A3 event (defined by 3GPP [17]), thus, the handover of
the x-th device (UE or UAV, i.e., x ∈ {“n”, “f”}) is initiated
if the following condition is satisfied for a period of TTT:

st,x + CIOt −∆H > ss,x + CIOs (1)

where st,x and ss,x represent the level of signal received by
the x-th device from the target and serving BSs, respectively;
CIOt and CIOs are the CIOs of the target and serving BSs,
respectively; and ∆H is the hysteresis. To avoid cluttering and
to focus on key novelty laying in the proposed coordination
of machine learning, we target the optimization of CIO while
the optimizations of TTT and ∆H are left for the future work.

The channel quality is defined as signal to interference plus
noise ratio at the j-th receiver from the i-th transmitter so that:

γi,j =
Pihi,j

σ2 +
∑
∀k∈K,k 6=i Pkhk,j

(2)

where Pi stands for the transmitting power of the transmitter
(represented by the BSs), hi,j and hk,j are the channel
qualities from the i-th and k-th transmitters, respectively, to
the j-th receiver, and σ2 stands for the noise. The summation∑
∀k∈K,k 6=i Pkhk,j represents the interference from other BSs,

as all BSs reuse the same communication resources.
Since we target downlink communication, the transmitter is

represented by either the g-th GBS or by the f -th UAV (i.e.,
i ∈ {“g”, “f”} and the receiver is either the f -th UAV or
th n-th UE (i.e., j ∈ {“f”, “n”}). Then, the communication
capacity of the n-th UE served directly by the g-th GBS and
via the f -th UAV are, respectively, defined as:

cn,g = Bnlog2(1 + γn,g) (3)

cn,f,g =
Bn

2
min
(
log2(1 + γn,f , log2(1 + γf,g)

)
(4)



where Bn is the channel bandwidth allocated to the n-th
UE. Note that we target optimization of handover while the
optimization of bandwidth is not directly related to such
problem. Thus, we allocate the bandwidth according to the
required capacity of the n-th UEs creq,n as in [1] so that:

Bn =
creq,n

log2 (1 + γk,n)
(5)

where γk,n stands for the channel quality between the serving
k-th BS and the n-th UE. If B would not be sufficient
for all served UEs, the bandwidth is sequentially allocated
starting from the UE with the highest channel quality until
any bandwidth is available or all UEs are served with cn,req.

The communication capacity of the n-th UE is generally
defined as:

cn = cn,gβ
UE
n,g + cn,f,gβ

UE
n,f β

UAV
f,g (6)

where βUE
n,g = 1 and βUE

n,f = 1 indicate connection of the n-th
UE to the g-th GBS and the f -th UAV, respectively.

The UEs served by the same k-th BS impose the total load
ρk =

∑
∀n∈N β

UE
n,kBn/Bk to k-th BS. The load ρk ∈ 〈0, 1〉

represents the proportion of bandwidth allocated by the k-th
BS to its served UEs out of the all bandwidth of the k-th BS.

III. PROBLEM FORMULATION

Our goal is to optimize the handover of UEs and UAVs
in the scenario with unknown channels h∗n,fh∗n,fh∗n,f among the UEs
and the transparent UAV relays so that the sum capacity of
the UEs served by the UAVs is maximized while avoiding
redundant handovers. To this end, we define the problem
of CIO setting for all BSs, i.e., determining CIO∗CIO∗CIO∗ =
{CIO1, CIO2, . . . , CIOK}, as:

h∗n,fh∗n,fh∗n,f ,CIO
∗CIO∗CIO∗ = argmax

CIOCIOCIO∈O,hn,fhn,fhn,f∈R

∑
∀n∈Nf

cn − µn (7)

where Nf ⊂ N is the set of UEs connected to the UAVs, O is
the set of possible CIO values from CIOmin to CIOmax, and
µn stands for the cost of handovers represented by signaling
(dozens or hundreds of kbits per handover per UE, see [17]).

A key challenge and difference with respect to related
works is that a proper CIO∗CIO∗CIO∗ setting in our targeted practical
scenario with the energy efficient transparent UAVs is directly
dependent on the prediction of the channel quality h∗n,fh∗n,fh∗n,f
among the transparent UAV relays and the UEs. Such channel
quality is not commonly available, since the transparent UAVs
do not transmit any own reference signals to measure the
channel quality [12]–[15]. Hence, we propose a completely
novel coordination between the DNN-based channel quality
prediction and the DRL-based CIO setting handling both sub-
problems jointly with a mutual awareness of each other.

IV. PROPOSED OORDINATED MACHINE LEARNING FOR
MOBILITY MANAGEMENT

In this section, we first outline related works on channel
quality prediction and CIO setting, which are a basement for
our work. Then, we describe the proposed concept of the
coordinated machine learning for the UEs’ ad UAVs’ handover
optimization in the scenario with the transparent UAV relays.

A. Background on Channel Quality Prediction and CIO
The proposed concept builds on our prior works on DNN-

based channel quality prediction for device-to-device (D2D)
communication [16] and DRL-based adjustment of CIO [1].

The DNN-based D2D channel quality prediction exploits
known channel quality of two UEs to the serving GBS and
few neighboring GBSs. Information on the channel quality
from the two UEs to the few GBSs is fed into DNN to
predict the quality of the direct channel between the two UEs.
This concept is beneficial in scenarios with massive number
of UEs, since it reduces overhead related to channel quality
measurement for radio resource management purposes. As
shown in [16], the concept yields high correlation (about 95%)
between true and predicted D2D channel qualities even in
the urban scenario with buildings resulting in a non-light-of-
sight (NLoS) communication. The idea can be applied also to
predict the channel between the UE and the serving transparent
UAV, which is in such case seen as one UE communicating
with the other UE.

The CIO setting is the problem, where a decision at the cur-
rent time step impacts performance in all subsequent time steps
in the environment with a high randomness and unpredictable
future evolution. Hence, the problem is NP-hard and requires
a prior knowledge of the future channel qualities, which is not
available and cannot be predicted for a long-term period of the
network operation. Such problem can be solved by DRL. As
shown in [1], the actor-critic DRL leads to a high performance
(in terms of sum capacity and handover mitigation) while it
converges sufficiently fast for practical applications.

In line with [1], we define the states, actions and rewards
for the actor-critic DRL in the following way. The set of
states S(t) at the time t represents the network status by
means of the load of BSs ρk. To reflect potential changes
due to handover of UE or UAV, the state space includes
also an additional load ρh(t) that would be added if the
handover of UEs or UAVs is performed. Hence, the state space
is defined as S(t) = {ρ1(t), . . . , ρK(t), ρh(t)}. The action
corresponds to the CIO setting for individual BSs, hence,
the action space is A(t) = {CIO1(t), . . . , CIOK(t)}. The
reward, inspired by the problem formulation from the CIO
optimization perspective, is defined as:

R =

∑
∀n∈Nf

cn

|Nf |creq,n
−

( ∑
∀n∈Nh

ρ∗n
ρt,n
ρs,n

+ |Nh|µn

)
+ 1 (8)

where Nh ⊂ N is the set of UEs performing handover in the
given time step (if the UAV performs handover, then all UEs
served by this particular UAV are accounted for in Nh), ρ∗n
is the load implied by the handover of the n-th UE, ρt,n and
ρs,i are the loads of the target and serving BSs of the n-th
UE, µn is the cost of handover of the n-th UE, and ”+1” is
the constant added for purposes of a stability of the system
and it is determined experimentally.

B. Proposed Coordination of DNN and DRL
In this section, we describe the proposed coordination of

the DNN-based channel quality prediction and the DRL-based



Fig. 2. Coordination of machine learning for RNN-based channel quality prediction between UEs and transparent UAV relays and DRL-based CIO setting.

CIO setting towards the sum capacity maximization while
reducing the number of UEs’ and UAVs’ handovers. The
proposed concept of coordinated machine learning predicting
the channel quality between UEs and transparent UAV relays
and setting CIO for all BSs is depicted in Fig. 2. The
environment, where the proposal is applied, represents the
mobile network with UEs, GBSs, and UAVs. The channel
quality from the UEs and the UAVs to the GBSs is commonly
known to the network and is measured in a traditional way
via reference signals [18]. Such information represents inputs
for the training of channel quality prediction. The targets for
supervised learning are represented by true channel qualities
between the UAVs and the UEs. The CIO is continuously
adjusted over time according to the loads of BSs (representing
the state of the network) based on outcomes of the DRL.

Now, lets us explain details of the principle of the proposed
coordination of both machine learning tools towards the same
objective. First, motivated by an experimental observation that
any error in the channel quality prediction is propagated more
significantly and degrades performance notably, the DNN for
channel quality prediction considered in related work [16]
should be updated to adjust the prediction itself. To this end,
we replace a general DNN with a recursive neural network
(RNN). This allows to consider the actual output of the
RNN at the time t (predicted channel quality h∗n,kh∗n,kh∗n,k) for an
update of the internal state (weights) of the RNN. Since the
actual inputs by means of the channels of the UEs to the
serving and neighboring BSs are known to the RNN, using
the output of the RNN is enough to adjust future predictions.
The RNN weights are adjusted using regression considering
originally trained and the new predicted channel qualities
between the UE and the transparent UAVs. This allows us
to avoid deviation of the channel quality prediction from
a DNN training phase in case the DRL-based CIO setting
would lead to impractical values resulting from an error in
the channel quality prediction. In other words, the loop in
the RNN guarantees that a potentially wrong or sub-optimal
setting of CIO would not steer the channel quality prediction
towards wrong values as well.

Second, since the channel quality prediction and CIO setting
are related to each other and mutually dependent (handover

decision depends on predicted channel quality), the reward R
normally intended only for DRL creates a virtual intercon-
nection of both RNN and DRL. Thus, the reward is not fed
only to the DRL, but also impacts output of the RRN. Of
course, one could think about inserting the reward to RNN
directly as an input. Unfortunately, such approach makes the
training impractical, as an uncertainty in DRL decision leads
to a slow convergence. Therefore, we exploit the reward for an
adjustment of the predicted channel quality. To this end, we
determine the difference in rewards (Rd) in two consecutive
steps t and t− 1 (corresponding to two consecutive handover
events by any UE or UAV) so that:

Rd =

{
1−

(
R(t− 1)/R(t)

)
if R(t− 1) ≥ R(t)

0 if R(t− 1) < R(t)
(9)

This variable indicates a change in the reward encapsulating
both new channel conditions due to new positions of UEs and
UAVs as well as changes in CIOs of individual BSs.

The Rd adjusts the predicted channel quality so that h∗n,f =
h∗n,f×(1+ |Rd|). Of course, considering a metric representing
solely the impact of the channel quality prediction accuracy
while keeping the same CIO would be a more suitable and
straightforward than the Rd. Unfortunately, such metric cannot
be derived in real-world networks during the network oper-
ation, since the channel between the UE and the transparent
UAV cannot be measured via traditional approaches and values
estimated via simulation might be inaccurate. Thus, we adopt
Rd encompassing both CIO and channel quality prediction
accuracy. Still, note that if the update of channel quality
prediction by Rd would lead to even a larger error in the
prediction, the error is reflected in the CIO setting via DRL
and would result in a lower reward. Then, the lower reward
leads to an adjustment of the channel quality prediction in the
next step. Hence the problem of non-isolated channel quality
prediction and CIO setting is automatically and continuously
monitored and resolved via the proposed coordination. Note
also that the load of BSs is influenced by handovers, which are
performed according to the predicted channel quality between
the UEs and the transparent UAV relays. Thus, the inputs to
the DRL for CIO setting already reflects the predicted channel
quality and no additional input from the RNN is required.



V. PERFORMANCE EVALUATION

In this section, we define scenario, models, competitive
algorithms, and metric for performance evaluation. Then,
simulation results are presented and discussed.

A. Simulation Scenario and Models

We consider an area of 2×2 km with three GBSs deployed
at random positions, but with the minimum distance among
GBSs of 750 meters. Up to eight UAVs are also deployed
in this area. Since optimization of the UAV’s position is not
relevant for our problem, the UAVs are placed to the center
of gravity of their served UEs. The UEs move according to
the random walk mobility model with the speed of each UE
randomly selected from {1.5, 3, 4.5} m/s. Like in the related
works on handover management, we model path loss among
all entities as 92.45 + 20× log10(d) + 20× log10(fr), where
d is the distance (in km) between the BS and the UE and fr
is the carrier frequency (in GHz). The results are averaged
out over 25 simulation runs, each consisting of 18000 steps,
each with a duration of 10 ms. The simulation parameters are
summarized in Table I. The simulation environment is used
also for creation of data set to train DNN, since no real-world
data set for our purposes is available.

The RNN is composed of an input layer, six hidden layers
out of which three fully connected layers (with 5 neurons)
are interleaved with three LSTM layers (with 64 hidden units)
allowing to implement the internal loop for the RNN. Sigmoid
activation function is used. The output layer is based on
regression and returns the predicted channel quality. For the
training, the number of epochs is set to 150 and the batch size
is 20 samples. These settings are determined experimentally.

The DRL is inspired by [1] and is represented by the actor
and the critic created by two fully connected neural networks.
The actor neural network has four hidden layers (120 neurons
in each) and the activation is by means of ReLU. The output
layer of the actor has 5|K| neurons, where 5 is the number of
options for CIO setting, see Table I and [20]. We use softmax
function in the output layer of the actor neural network, since
our action space is discrete. The critic neural network has three
hidden layers (120 neurons in each) and ReLU activation. The
output layer of the critic has one neuron. The learning rate of
the actor as well as critic is set to 0.01. The actor and critic
settings are determined experimentally.

TABLE I
SIMULATION PARAMETERS AND SETTING

Number of UEs 45 per GBS and 15 per UAV
UAV altitude 80 m [1]

Number of GBSs/UAVs 3 / from 1 to 8
Carrier frequency 1.8 GHz

Bandwidth (all BSs) 100 MHz
Tx Power of GBS/UAVs 23 / 15 dBm

Hysteresis ∆H / TTT 3 dB / 0.05 s
Handover cost per UE µn 100 kb [17]
Set of possible CIO values {-6, -3, 0, 3, 6} dB [20]

B. Competitive Algorithms and Performance Metrics

We compare the proposed concept with following state-of-
the-art approaches and benchmarks:
• Association – the UEs are always connected to the BS

providing the highest channel quality leading to maxi-
mized capacity at the cost of a high number of handovers.

• Static CIO and DNN channel quality prediction – state
of the art channel quality prediction [16] combined with
traditional setting of CIO to a static value.

• Static CIO with perfectly known channels – static CIO as
in 3GPP [17] with an impractical assumption on perfectly
known channels among the all UAVs and UEs.

The performance is assessed using following metrics:
• Capacity – the sum capacity of UEs averaged over time

and simulations.
• Number of handovers – total number of handovers during

simulations. We investigate separately the number of
handovers performed by the UEs and by the UAVs.

C. Simulation Results

First, we investigate the sum capacity of UEs in Fig. 3. As
expected, the highest capacity is observed for the association,
since the UEs are always connected to the BS with the highest
channel quality. The proposed concept outperforms the static
CIO with DNN predicted channels by up to 12.7%. This gain is
introduced by a smart setting of CIO reflecting a potential error
in the DNN channel quality prediction via the coordination of
the DNN and the DRL. Figure 3 also demonstrates that even
if we could know perfectly all channels among the UAVs and
UEs, which is not realistic and feasible for the transparent
UAVs, still, the proposed coordination of the DNN and the
DRL introduces a gain in capacity even more than 5%. The
gain results from the fact that the coordination between the
DNN and the DRL allows to mitigate a negative impact of
the errors in channel quality prediction on CIO setting.

Furthermore, we investigate the number of handovers per-
formed by the UEs (Fig. 4) and by the UAVs (Fig. 5). For
both cases, the proposed solution reaches the lowest number
of handovers compared to all other approaches. The highest
number of handovers is reached by the association (almost

Fig. 3. Impact of the number of UAVs on the sum capacity of UEs.



Fig. 4. Number of handovers performed by UEs during the simulations.
Note that the zoomed part includes all algorithms but association, to illustrate
differences among algorithms reaching similar performance.

twice for UAVs and almost 10-times for UEs with respect to
the proposal). This huge number of handovers is a cost paid
for a small increase in the capacity. Comparing the proposal
with static CIO setting with DNN-based channel prediction
shows that the proposed coordinated approach reduces the
number of handovers by 6.7% and 7.8% for the UEs and
UAVs, respectively. The reduction in the number of handovers
by the proposal is even more notable (12.9% and 16.4% for
UEs and UAVs, respectively) if compared to the static CIO
with all the channels among UEs and UAVs being perfectly
known. The reason is that the perfectly known channels allow
to associate the UEs so that the capacity is increased (see
Fig. 3) compared to the solution with the DNN predicted
channels, but the capacity increase is at the cost of additional
handovers. This trade-off observed for the related works is
eliminated by the proposed coordination of both CIO setting
and DNN channel quality prediction enabling to reduce the
number of handovers while increasing the capacity compared
to the related works.

VI. CONCLUSIONS

We have proposed a novel coordination of the DNN for
the prediction of the channel quality between UEs and energy
efficient transparent UAV relays with the DRL for CIO setting
to mitigate the accumulation of errors resulting from individual
machine learning tools. The concept is based on an internal
feedback in the neural network and an integration of the DRL
reward to an adjustment of the output of the neural network.
This allows both to increase the sum capacity and reduce the
number of handovers compared to the related works.

In the future, joint optimization of multiple handover de-
cision parameters should be investigated and the interaction
among machine learning tools should be further optimized.
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