
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY 1

Cooperative Multi-Agent Deep Reinforcement
Learning for Dynamic Task Execution and Resource

Allocation in Vehicular Edge Computing
Robert Rauch, Zdenek Becvar, Senior Member, IEEE, Pavel Mach, Member, IEEE, Juraj Gazda

Abstract—Computer vision plays a crucial role in enabling
connected autonomous vehicles (CAVs) to observe and compre-
hend their surroundings. The computer vision tasks are typically
based on convolutional neural networks (CNNs). However, CNNs
often require significant processing power. Techniques like early
exiting and split computing enhance CNN task execution latency
and adaptability to varying environmental conditions. Since the
split computing introduces additional overhead for offloading of
the task from the CAV to an edge servers, we incorporate multiple
autoencoders within each split point to enhance the adaptability
of splitting under varying environmental conditions. However, the
autoencoders introduce an additional layer of complexity related
to the selection of the optimal compression strategy alongside
the splitting and exiting decisions. To tackle this challenge, we
introduce a novel approach based on the Multi-Agent Deep
Deterministic Policy Gradient (MADDPG) algorithm. This algo-
rithm dynamically and jointly determines the most suitable exit
point, split point, and autoencoder. Furthermore, the MADDPG-
based approach considers other CAVs when selecting action,
promoting cooperation among CAVs. Our results demonstrate
that the proposed approach reduces latency up to 44.4% while
maintaining at least comparable or even higher accuracy of
the computed vision outcome compared to the state-of-the-art
solutions.

Index Terms—Autonomous Mobility, Computer Vision, Coop-
erative Multi-Agent, Deep Learning, Dynamic Task Execution

Copyright (c) 2024 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

This work was supported by The Slovak Research and Development Agency
project no. APVV SK-CZ-RD-21-0028, APVV-23-0512, the Slovak Academy
of Sciences project no. VEGA 1/0685/23, and by the Ministry of Education,
Youth and Sports, Czech Republic, under the project LUASK22064.

Part of the Research results was obtained using the computational re-
sources procured in the national project National competence centre for high
performance computing (project code: 311070AKF2) funded by European
Regional Development Fund, EU Structural Funds Informatization of society,
Operational Program Integrated Infrastructure.

Icons used in this work were made by Freepik, vectorsmarket15, rcherem,
Vectors Market and Ylivdesign from www.flaticon.com.

During the preparation of this work the authors used AI tool in order
to improve language and readability. The ideas and content remain the sole
responsibility of the authors.

R. Rauch and J. Gazda are with the Department of Computers and
Informatics, Technical University of Kosice, 04200 Kosice, Slovakia. (e-mail:
robert.rauch@tuke.sk; juraj.gazda@tuke.sk)

Z. Becvar and P. Mach are with the Deparment of Telecommuni-
cation Engineering, Faculty of Electrical Engineering, Czech Technical
University in Prague, Czech Republic. (e-mail: zdenek.becvar@fel.cvut.cz;
machp2@fel.cvut.cz)

I. Introduction

The autonomous driving has a potential to transform the
transportation by enabling connected autonomous vehicles
(CAVs) to operate without human intervention [1]. A key
challenge in the autonomous driving is, however, to ensure the
real-time responsiveness of all systems in a highly dynamic
and ever-changing environment. The CAVs usually generate
and process huge amount of high-dimensional data from
various sensors [2], [3], allowing the CAVs to collect data
related to their inside as well as outside environment.

The sensor data related to the environment sensing are
commonly processed using various computer vision tech-
niques [4]. Deep learning techniques, predominantly based
on convolutional neural networks (CNNs), are adopted for
the computer vision tasks, such as image classification [5],
image segmentation [6], or object detection [7]. All these
computer vision tasks for vehicular applications require an
execution under a latency constraint and, at the same time, a
high accuracy of the execution results should be also ensured.
Unfortunately, the processing of the computer vision tasks
with strict latency constraint directly on the CAV may not be
possible due to limited computational capabilities of the CAVs
[8]. Hence, the processing of the computer vision tasks can
be offloaded to edge computing servers with relatively high
computational capabilities. This offloading concept, where the
CAVs can delegate computationally demanding tasks to the
computing servers in their vicinity, is known as the Vehicular
Edge Computing (VEC) [9].

The key challenge related to the offloading of computation
tasks from the CAV to the edge server is an allocation of
communication and computation resources. To this end, vari-
ous approaches, including heuristic [10], [11] and machine or
deep learning-based [12], [13], [14], are employed. However,
none of these studies specifically address the offloading of the
computer vision tasks, which are crucial for the autonomous
driving. The computer vision tasks bring number of additional
challenges, such as the need for sequential execution [15],
high data volume generation [2], inherent variability and
complexity [16], and requirement on low latency response
[2]. These challenges combined all together potentially strain
communication and computational resources for VEC [2].

To reduce both communication and computation load im-
posed by the computer vision tasks, the task partitioning can
be adopted, see, e.g., [17], [18]. As a result, each task can
be divided into several subtasks, some executed directly on

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY 2

the CAV while the rest offloaded to the edge server(s). The
sequential processing of CNN can be split between two places
[19] to leverage the computational capabilities of both the CAV
and the edge server to process CNN. In such case, an initial
part of CNN up to a certain layer, denoted as a split point,
is processed on the CAV. Then, the intermediate data from
the last layer of CNN processed at the CAV is transferred
to the edge server, where the processing of the remaining
CNN layers continues from the split point to the output layer.
The split of CNN’s processing enables to reduce the load of
communication as well as computing resources of the edge
server compared to the offloading of the whole processing of
CNN to the edge server [19], [20], [21].

The optimization of split computing is addressed in [22],
where multi-armed bandit approach is employed to find the
split point leading to the lowest latency of execution. However,
the most prominent optimal strategies for task offloading
involve either transferring the entire task to the edge server or
executing the entire task on the CAV [19]. This is often favored
due to the significant increase in communication latency
associated with the extensive data generated by convolutional
layers, that would have to be offloaded.

Transmitting a huge amount of data generated by the com-
puter vision applications in the CAVs to the edge server is a
challenge in scenarios with a high number of CAVs (e.g., in
downtown during busy hours) or in the areas with limited
availability and/or insufficient quality of wireless resources
between the CAV(s) and the edge server(s) (e.g., in rural
areas). This challenge can be partially suppressed by using
autoencoders to compress data in the CAV and decompress on
the server [23]. The level and complexity of the compression
rate determines the loss in accuracy and the amount of data
to be transferred [24]. The performance of autoencoders for
various layers or compression ratios on a given layer is investi-
gated, for example, in [23], [24]. However, these studies do not
address the problem of dynamically selecting an appropriate
autoencoder depending on the environmental conditions (e.g.,
wireless channel quality and availability of radio resources).
Besides, even if both the CNN splitting and the autoencoders
may improve the overall CNN-based task execution latency
for the CAVs, it may still not be sufficient for delay sensitive
applications related to autonomous driving [25].

To further optimize the performance of CNN, the CNN’s
architecture with early exits can also be adopted [26]. The
early exits are understood as new branches in CNN [27]. These
branches enable CNN to provide output (exit) at different
points of the processing. On one hand, exiting through earlier
branches can improve the latency of CNN. On the other hand,
the early exit may compromise the accuracy of the CNN, since
not all layers are exploited. Therefore, the selection of exit
points allows to adjust the trade-off between the accuracy and
the latency [28]. Besides, depending on a technique adopted
for the early exiting, the early exit may also infer an additional
computational overhead, when assessing the confidence of
each exit’s output [27]. Some techniques, however, decide
exit before execution and, thus, may not infer computational
overhead. The technique proposed in [25] determines the
exit based on current environmental conditions (e.g., wireless

channel quality and availability of radio resources), while the
approach presented in [29] decides the exit by incorporating
the network’s confidence for exiting prior to each early exit.
These approaches allows CNN to identify the appropriate exit
prior to its selection.

Multiple techniques can be employed to reduce the task
execution latency using both early exiting and split computing
[30]. The work proposed in [25] suggests using a selective
heuristic method. Furthermore, deep learning is adopted in
[26] to find the optimal split and exit points. However, these
approaches do not employ autoencoders or any other form of
intermediate data compression. As [22] shows, this constrains
the solution space significantly when determining the optimal
strategy, which involves the selection of the most appropriate
split point and exit point. Furthermore, both [25] and [26]
approaches are greedy, which means they do not take other
vehicles into account when selecting the optimal strategy.
Consequently, in the scenarios with multiple CAVs, strict
latency requirements, and high computational demands, the
efficiency of the solutions described in [25] and [26] may be
compromised.

Motivated by drawbacks and gaps of existing works, we
target in this paper a scenario with the multiple CAVs running
tasks related to the autonomous driving. These tasks can be
processed locally in the CAV or (partially) offloaded to the
edge computing server via shared communication resources.
In this scenario, we minimize the execution latency of the task
while maximizing the accuracy of the processing outcomes
via joint selection of the CNNs’ split point, exit point, and
autoencoder. Moreover, unlike state-of-the-art works that adopt
a greedy selection by each CAV, we encourage the CAVs
adopting a cooperative behavior when choosing their strat-
egy to effectively orchestrate both communication and edge
computing resources among the CAVs.

The main contributions of this paper are summarized as
follows:
• We formulate the problem of maximization of the CAVs’

utility, represented by a weighted sum of the latency
and accuracy of CNN outcomes, with constraints on
guaranteeing the maximum latency of the overall task
execution and the minimum required accuracy of the task
processing. The solution is based on a joint selection of the
CNNs’ split point, exit point, and autoencoder. To the best
of our knowledge no prior work incorporates a dynamic
selection of the autoencoder together with the split and exit
points selection.

• Given the very high complexity of the problem and very
large search and observation spaces, we introduce a novel
framework based on reinforcement learning. To this end,
we first transform the problem into Markov Decision
Process (MDP). Since the CAVs share communication
and computing resources, any action of individual CAV
influences other CAVs. To motivate cooperation among
CAV, we adopt cooperative multi-agent techniques.

• Through simulations, we demonstrate that our proposed
solution outperforms the existing state-of-the-art works in
terms of reducing the task execution latency (by up to
44.4%), while maintaining comparable or even superior

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY 3

accuracy of the outcomes of the computer vision task
processing.

This paper is structured as follows. In Section II, we present
the system model. In Section III, we formulate the problem as
a non-linear programming and discuss its properties. In Section
IV, we propose a novel algorithm to solve the problem. In
Section V, we demonstrate the effectiveness of our algorithm
through numerical simulations and comparisons with existing
methods. In Section VI, we summarize our main contributions
and suggest directions for future work.

II. System Model
This section first introduces a network model followed by

CNN model representing the computation task. Then, we
describe the model of the communication channel between the
CAV and the edge server together with the computing model
employed for CNN processing.

A. Network model
As in, e.g., [25], [26], we consider a set of CAVs V under

coverage of a single edge server 𝑏 collocated with a base station,
see Fig. 1. We assume only single edge server as the novelty
of our work is not related to migration and/or handover and
tasks are offloaded in orders of a few milliseconds during which
even fast moving vehicles cover very short distances. During
the time interval 𝑡, the CAVs generate a set of computing
tasks Z𝑡 ,𝑣 = {𝑧𝑡 ,𝑣,1, 𝑧𝑡 ,𝑣,2, ..., 𝑧𝑡 ,𝑣, |Z𝑡,𝑣 | }, where 𝑧 ∈ Z𝑡 ,𝑣

represents a task and |Z𝑡 ,𝑣 | denotes cardinality of a set Z𝑡 ,𝑣 .
Each task 𝑧 ∈ Z𝑡 ,𝑣 is associated to specific CAV 𝑣 during
time interval 𝑡 and is characterized by its configuration (i.e.,
by its computational demand for CAV 𝐼𝑧,𝑣 , computational
demand for edge server 𝐼𝑧,𝑏, volume of the offloading data for
given task 𝑐UL

𝑧,𝑙
). Here, computational demand 𝐼𝑧,𝑣 represents

the computational resources the CAV must allocate to process
the task locally, while computational demand 𝐼𝑧,𝑏 quantifies
the computational resources the edge server would require to
process the task if it is offloaded. The tasks inZ𝑡 ,𝑣 are assumed
to be generated periodically corresponding to, for example, a
scenario with a camera sensor operating at a fixed frame rate.
Note, that we assume all CAVs V to be generating set of tasks
Z𝑡 ,𝑣 during each time interval 𝑡.

B. Convolutional Neural Network Model
In this section, we describe a CNN model as a task to be

processed. In this regard, following [25], [26], we consider image
classification tasks to be processed by CNN. In CAVs, image
classification can be applied to various scenarios, such as lane
detection [31], lane classification [31], road sign detection [32],
or collision detection [33], among others.

Each task is modeled as CNN with a set of exits 𝐸 =

{𝑒1, 𝑒2, ..., 𝑒 |𝐸 | }, where |𝐸 | denotes the number of exits. Addi-
tionally, each CNN has a set of splits 𝑆 = {𝑠1, 𝑠2, ..., 𝑠 |𝑆 | } and a
corresponding set of autoencoders 𝐴𝑠 = {𝑎𝑠,1, 𝑎𝑠,2, ..., 𝑎𝑠, |𝐴𝑠 | }
for each split 𝑠 ∈ 𝑆.

At each time interval 𝑡, the CAV dynamically updates the
execution strategy of the CNN-based task according to the

Sensor data

Intermediate
data cz,l

Intermediate
data cz,l

exit

4
.

R
ec

ei
ve

 t
as

k
R
es

u
lt

CAVs

Edge server

CNN layer

Encoder

Decoder

Split point

1. Initiate task
 Processing on CAV

2. Offload task intermediate
 data cz,l to edge server

3. Finish task processing on edge server

Ta
sk

 c
o-

in
fe

re
n
ce

Task co-inference

l1

le

la

la
encode

decode

UL

UL

UL

s

s

Fig. 1: The model shows CAVs communicating with an edge
server. Each CAV sequentially processes CNN layers, ending
with an autoencoder that compresses the final layer’s output.
The compressed data is offloaded to the edge server, where it
is decompressed by the decoder to reconstruct the last layer’s
output before continuing the execution of the subsequent CNN
layers.

current network and environmental conditions (e.g., average
latency of the task execution in the time interval 𝑡, average
offloading time of all tasks in the time interval 𝑡) and task
requirements (i.e., accuracy of the task processing and latency).
The execution strategy consists of three components: the exit
point, the split point, and the autoencoder. Thus, we formulate
the execution strategy of the 𝑣-th CAV within the time interval
𝑡 as:

𝜁𝑡 ,𝑣 = {𝑒𝑡 ,𝑣 , 𝑠𝑡 ,𝑣 , 𝑎𝑠𝑡,𝑣 ,𝑡 ,𝑣}, (1)

where 𝑒𝑡 ,𝑣 ∈ 𝐸 , 𝑠𝑡 ,𝑣 ∈ 𝑆, and 𝑎𝑠𝑡,𝑣 ,𝑡 ,𝑣 ∈ 𝐴𝑠 are the exit point,
the split point, and the autoencoder, respectively, selected by the
CAV 𝑣 at the time interval 𝑡.

Similarly to [25], the set of layers executed on the CAV
is labeled as L𝑧,𝑣 = {𝑙1, 𝑙2, ..., 𝑙encode

𝑎𝑠
} and the set of layers

executed on the server as L𝑧,𝑏 = {𝑙decode
𝑎𝑠

, 𝑙2, ..., 𝑙𝑒}, where 𝑙

denotes the layer of the CNN. The layers denoted as 𝑙encode
𝑎𝑠

and
𝑙decode
𝑎𝑠

are the encoder and decoder parts of the autoencoder,
respectively. The encoder and decoder components of the
autoencoder employ convolutional layers, consistent with the
remainder of the network’s architecture. Finally, the layer 𝑙𝑒 is

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY 4

TABLE I: Main Notations Used

Symbol Definition

𝑏 edge server
𝑣 CAV 𝑣 ∈ V
𝑧 task 𝑧 ∈ Z𝑡,𝑣

Z𝑡,𝑣 Z𝑡,𝑣 = {𝑧 ∈ Z𝑡,𝑣 |𝑧 generated by CAV
within time iterval 𝑡 }

𝑒 exit 𝑒 ∈ 𝐸

𝑠 s-th split 𝑠 ∈ 𝑆 determining task partitioning
𝑎 autoencoder 𝑎 ∈ 𝐴

𝜁𝑡,𝑣 strategy for 𝑒, 𝑠 and 𝑎 for CAV 𝑣 withing time
iterval 𝑡

𝜇𝑡,𝑣 accuracy of the CNN model for CAV 𝑣 within
time interval 𝑡

𝜓lat
𝑡,𝑣 task requirement for latency of task execution

𝜓acc
𝑡,𝑣 task requirement for accuracy of the CNN

model
𝑊 lat

𝑣 weight for latency of task execution
𝑊acc

𝑣 weight for accuracy of the CNN model
𝑟𝑡,𝑣 data rate between CAV 𝑣 and edge server 𝑏
𝜂𝑣 Computational capability of CAV 𝑣 in FLOPS
𝜂𝑏 Computational capability of edge server 𝑏 in

FLOPS
𝑁RB Number of resource blocks available

the exit point, which corresponds to the end of the CNN model
processing. The task co-inference of these layers, achieved
through the interaction between the edge server and the CAV(s),
is depicted in Fig. 1.

C. Communication Model
In this section, we introduce communication model employed

if task is offloaded from the CAV to edge server. Following recent
related works, such as [34], we assume the network conditions
to be constant when the tasks are transferred to the edge server.
This assumption is based on the fact that the task offloading
process typically takes a very short amount of time (in order
of a few milliseconds). Then, the data rate for offloading of the
computation task from the CAV 𝑣 to the edge server 𝑏 at time 𝑡

can be expressed as:

𝑟𝑡 ,𝑣 = 𝑁bit
𝑣 𝜌𝑣

𝑁RB

|V| 𝑅, (2)

where 𝑁bit
𝑣 is the number of bits per symbol and 𝜌𝑣 is the

code rate for transmissions generated by the 𝑣-th vehicle,
both parameters are determined by the modulation and coding
scheme as referenced in [35]. The term 𝑁RB denotes the total
number of resource blocks available at the base station (i.e., the
base station where the edge server is co-located) to the set of
CAVs |V|, and 𝑅 represents the symbol rate of the base station.

In order to determine data volume to be offloaded for task
𝑧 ∈ Z𝑡 ,𝑣 depending on the selected split and autoencoder in
CNN described in previous subsection, we calculate the amount
of bits of the layer 𝑙 output as [36]:

𝑐UP
𝑧,𝑙 = 𝐷width

𝑙 𝐷
height
𝑙

𝑙ch𝑃, (3)

where, 𝐷width
𝑙

and 𝐷
height
𝑙

denote the spatial dimensions of the
output of the layer 𝑙. In the context of a convolutional layer [37],
these terms refer to the horizontal and vertical dimensions of
the feature maps [37]. Conversely, for a linear layer [37], these

values would typically be 1, reflecting the absence of a spatial
structure in such layers. Furthermore, 𝑙ch corresponds to the
number of output channels, and 𝑃 is the bit size according to
the number format in float32 [38]. The value of 𝑙ch is constant
for each autoencoder and is preset before the training.

The 𝐷width
𝑙

and 𝐷
height
𝑙

are recursively computed using [39]:

𝐷𝑙 =

{ ⌊
𝐷𝑙−1+2(𝑙pad)−(𝑙ker)

(𝑙str) − 1
⌋
, if 𝑙 > 0,

𝐷0, otherwise,
(4)

where 𝐷𝑙 is either width 𝐷width
𝑙

or height 𝐷height
𝑙

of the 𝑙-th layer
output, 𝑙pad is the padding of the layer, 𝑙ker is the kernel size of
the layer, 𝑙str is the stride of the layer, and 𝐷0 is the dimension
of the input image generated by the sensors on the CAV.

Finally, the uplink communication latency for the offloading
of the task 𝑧 ∈ Z𝑡 ,𝑣 is defined as:

𝑡comm
𝑧 = 𝑡comm

𝑧,𝑤 +
𝑐UL
𝑧,𝑙

𝑟𝑡 ,𝑣
, (5)

where 𝑡comm
𝑧,𝑤 denotes the latency that accounts for the queue and

network dynamics (e.g., packet loss), as in [40]. We assume
that the CAV generates new tasks and enqueues them in a
First-In-First-Out (FIFO) order, as in other works, such as [41].
This assumption increases its generality, making it suitable for
various wireless network scenarios [41]. Since the downlink data
size is a single scalar value returned by processing of the CNN, it
is negligible and communication for delivery of the computation
results from the edge server to the CAV is neglected as in other
related works, see e.g., [42]. We assume a flat channel during
offloading process, similarly to [42], as small-scale fading effects
are averaged out across the transmission latency. This modeling
choice is reasonable for analyzing the fundamental trends of the
problem under study, as flat channel models have been widely
adopted in vehicular offloading studies (see e.g., [10], [43], [44],
[45]).

D. Computation Model
Now, let’s discuss computation model employed by our work.

The overall computational demand in floating point operations
(FLOP) for a part of the task 𝑧 executed on the CAV 𝑣 is
expressed as:

𝐼𝑧,𝑣 =
∑︁

𝑙∈L𝑧,𝑣

𝐼𝑧,𝑙 . (6)

where 𝐼𝑧,𝑙 is computing demand of the CNN layer 𝑙 processed
at the CAV estimated in line with [46] as:

𝐼𝑧,𝑙 = 2𝐷width
𝑙 𝐷

height
𝑙
(𝑙ker)2𝑙ch (𝑙 − 1)ch, (7)

where (𝑙 − 1)ch is the number of input channels of the layer 𝑙.
Subsequently, the latency of the task execution on CAV is

determined as:
𝑡
comp
𝑧,𝑣 = 𝑡

comp
𝑧,𝑤,𝑣 +

𝐼𝑧,𝑣

𝜂𝑣
, (8)

where 𝑡
comp
𝑧,𝑤,𝑣 denotes the waiting (queuing) time for the com-

pletion of previous tasks on the CAV, and 𝜂𝑣 indicates the
computation capacity of the CAV, measured in floating point

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY 5

operations per second (FLOPS). Note that similarly as with
communication resources, we exploit FIFO for queuing the tasks
on the CAV.

The task can be offloaded to the edge server for further
processing. The computational demand of a part of the task
𝑧 processed on the edge server 𝑏 is expressed as:

𝐼𝑧,𝑏 =
∑︁

𝑙∈L𝑧,𝑏

𝐼𝑧,𝑙 , (9)

where computational demand of a single layer 𝑙 are estimated
according to (7).

The overall computation latency on the edge server 𝑡comp
𝑧,𝑏

is
derived as:

𝑡
comp
𝑧,𝑏

= 𝑡
comp
𝑧,𝑤,𝑏

+
𝐼𝑧,𝑏

𝜂𝑏
, (10)

where 𝑡
comp
𝑧,𝑤,𝑏

signifies the cumulative latency incurred by all
preceding tasks on the edge server, and 𝜂𝑏 represents the
computing capacity of the edge server 𝑏.

Finally, we can calculate the total computation latency of the
task execution consisting of the local execution time on the CAV
and the remote execution time on the edge server as:

𝑡
comp
𝑧 = 𝑡

comp
𝑧,𝑣 + 𝑡comp

𝑧,𝑏
. (11)

E. CAV Utility
The utility of the CAV refers to the measure of how well the

CAV chooses the optimal strategy under different environmental
states (e.g., data rate between the CAV and edge server) [47],
[48]. The optimal strategy is, then, updated at the beginning of
each time interval 𝑡. We model utility as a trade-off between the
latency and the accuracy that the CAV achieves relative to the
task’s requirements.

To define the latency, we first specify the total latency of the
task 𝑡𝑧 , which comprises of the communication latency 𝑡comm

𝑧

and the computation latency 𝑡
comp
𝑧 , as follows:

𝑡𝑧 = 𝑡comm
𝑧 + 𝑡comp

𝑧 . (12)

Since an unknown number of tasks can be executed during each
time interval 𝑡, we quantify the latency as an average latency 𝑡𝑡 ,𝑣
over all tasks generated in 𝑡 as:

𝑡𝑡 ,𝑣 =

∑
𝑧∈Z𝑡,𝑣

𝑡𝑧

|Z𝑡 ,𝑣 |
, (13)

Similarly, we define the accuracy as a ratio between the number
of correctly classified tasks depending on the current strategy
within certain time period 𝑡 (𝜅𝑡 ,𝑣) to all generate tasks as:

𝜇𝑡 ,𝑣 =
𝜅𝑡 ,𝑣

|Z𝑡 ,𝑣 |
, (14)

Note that in the event the task is discarded, such task is deemed
to have incorrectly classified image.

Now, we define a reward function for the time interval 𝑡 and
the vehicle 𝑣 as:

𝑢𝑡 ,𝑣 = (1 −
𝑡𝑡 ,𝑣

𝜓lat
𝑡 ,𝑣

)𝑊 lat
𝑣 +

𝜇𝑡 ,𝑣 − 𝜓acc
𝑡 ,𝑣

1 − 𝜓acc
𝑡 ,𝑣

𝑊acc
𝑣 , (15)

where 𝜓lat
𝑡 ,𝑣 and 𝜓acc

𝑡 ,𝑣 are the requirements for the latency and
the accuracy, respectively, and 𝑊 lat

𝑣 and 𝑊acc
𝑣 are the weights for

the latency and the accuracy, respectively. The weights 𝑊 lat
𝑣 and

𝑊acc
𝑣 are crucial in defining the trade-off between latency and

accuracy, and are determined by the application’s requirements.
The application’s priorities dictate whether the latency or the
accuracy is more important. The first part of (15) quantifies the
reward’s latency value, whereas the second part delineates the
reward’s accuracy value. Both parts of (15) have two properties:
i) they are normalized to the same range (e.g., between [0,
1]), and ii) they are positively correlated with the degree of
satisfaction of the task’s requirements. In other words, the first
part of (15) increases with lower latency, while the second
part of (15) increases with higher accuracy, relative to the task
requirements.

The reward function defined in (15) assigns a positive or
negative value to the latency and the accuracy depending on
whether it meets or violates requirements for these values. The
extent of deviation from the requirements directly corresponds
to the magnitude of these performance metrics. Note, that the
reward function can achieve a positive value even if one of the
requirements is not met, depending on the weights.

Now, knowing the reward function, we also define a utility
for a CAV 𝑣 as a sum of rewards over an infinite time period as:

Φ𝑡 ,𝑣 =
∑︁

𝑡∈[0,∞]
𝛾𝑡−1𝑢𝑡 ,𝑣 , (16)

where 𝛾𝑡−1 ∈ [0, 1] is a discount factor, that determines
the present value of future utilities [49]. The discount factor
is one of the hyperparameters that is typically tuned using
numerical methods, such as hyperparameter search [50]. The
utility of our system depends on how well it achieves the highest
possible accuracy and the lowest possible latency over a infinite
period. We consider an infinite period in our problem due to
its classification as an infinite-horizon problem [51]. In such
scenarios, the decision-making process extends indefinitely into
the future. However, this utility is not solely dependent on the
accuracy and latency of a single CAV, but it is influenced by
all CAVs in the system. When the CAV selects the strategy
𝜁𝑡 ,𝑣 defined in (1), it invariably impacts all other CAVs in the
system. Conversely, the utility of the CAV is also influenced
by the strategies of all other CAVs, denoted as 𝜁𝑡 ,V′ , where
V′ = V − {𝑣}.

III. Problem Formulation
Our objective is to maximize the utility of all CAVs. We

formulate such objective as:

P1: max
{𝜁𝑡,𝑣 ,𝜁𝑡,V′ }

∑︁
𝑣∈V

Φ𝑡 ,𝑣 (17)

s.t. 𝑠𝑡 ,𝑣 ∈ 𝑆, 𝑎𝑠𝑡,𝑣 ,𝑡 ,𝑣 ∈ 𝐴𝑠 , 𝑒𝑡 ,𝑣 ∈ 𝐸, (17a)
𝐼𝑧,𝑣 , +𝐼𝑧,𝑏 = 𝐼𝑧 , ∀𝑧 ∈ Z𝑡 ,𝑣 (17b)
𝜇𝑡 ,𝑣 ≥ 𝜓acc

𝑡 ,𝑣 , ∀𝑣 ∈ V (17c)
𝑡𝑡 ,𝑣 ≤ 𝜓lat

𝑡 ,𝑣 , ∀𝑣 ∈ V (17d)

where constraint (17a) ensures that the split, autoencoder,
and exit are confined within predefined sets; constraint (17b)
guarantees that the sum of instructions executed on the CAV
and on the edge server is equivalent to all instructions that

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY 6

need to be executed; constraint (17c) guarantees that for all
CAVs, accuracy remains within the bounds defined by the task’s
accuracy requirements; and constraint (17d) ensures that average
latencies for all CAVs adheres to the task’s specified latency
requirement.

The optimization problem formulated in (17) is a mixed-
integer nonlinear programming (MINLP) problem. Such prob-
lems are known to be NP-hard, thus very difficult to be solved
in polynomial time by conventional optimization techniques,
such as simplex or interior-point methods. Consequently, the
MINLP problems generally require the iterative numerical
methods to find approximate solutions. Moreover, the problem
becomes even more complicated if the number of CAVs in the
environment increases. The strategies of the agents affect the
communication and computational resources available, which
introduces uncertainty and complexity to the problem. Further-
more, the agents’ strategies are interdependent, which means
that the optimal solution for one agent depends on the actions of
the others. Our objective is to find the strategy that satisfies the
utility function defined in (17). However, this is a difficult multi-
agent optimization problem that involves non-linear and non-
convex constraints. Hence, to address this problem, we apply
a deep RL algorithm called Multi-Agent Deep Deterministic
Policy Gradient (MADDPG), which is a state-of-the-art method
for solving complex multi-agent scenarios.

IV. Proposed Approach
In this section, we first propose several modifications to the

CNN architectures (e.g., VGG-16 architecture based on [52])
taking place during the offline configuration of the CNN in
order to jointly incorporate early exits, splits, and autoencoders.
These components allow us to adjust the inference process
according to the environmental conditions, such as the data
rate to the base station. Then, we describe MADDPG and
its adaptation to our problem. After that, we transform the
problem to Markov decision process and device a MADDPG-
based strategy selection algorithm. Last, we also discuss several
practical implementation aspects of proposed approach.

A. Offline Configuration of CNN
In this section, we propose a necessary enhancements facili-

tated during an offline configuration of CNN in order to provide
a dynamic execution of CNN while enabling a co-inference
paradigm between the CAVs and the edge server, illustrated in
Fig. 1. In particular, our goal is to integrate early exits, splits
and autoencoders within our CNN network to enable their joint
selection. The incorporation of early exits and splits allows
us to determine the number of layers to be processed prior
to the termination of CNN execution and potential offloading
of intermediate data to the edge server, respectively. On top of
that, the selection of potential split point is strongly impacted
by choosing a degree of data compression employed during the
offloading process thanks to the set of trained autoencoders. All
these features allows us to find a proper trade-off between the
CNN’s computational complexity and it’s accuracy. The offline
configuration, featuring the modified CNN model, is depicted
in Fig. 2.

Sensor data

exit e|E|

l1

l2

le

la

la
encode

decode

s,1

s,1

l3

|E|

la

la
encode

decode

s,2

s,2 la
decode
s,|As|

la
decode
s,|As|

Choose
autoencoder

le1Exit?
Yes

No

exit e1

Split point

CNN layer

Encoder

Decoder

Edge server

Base station

CAV

Split

Fig. 2: Schematic representation of a CNN architecture, which
is augmented with additional splits and early exit mechanisms.
Within the proposed model, each split is equipped with a
selection of autoencoders from which a single autoencoder is
chosen based on current strategy. The encoder segment of this
autoencoder is then tasked with encoding the last executed layer
of the network. Once the data is encoded, it is transferred to
an edge server. Subsequently, the decoder segment of the same
autoencoder decodes the data, reconstructing the state of the last
executed layer.

To augment the CNN with additional branches and, thus,
having a possibility of early execution termination, we employ
the BranchyNet principle [27]. To this end, we train jointly the
auxiliary exits together with the main sequence of layers (i.e.,
excluding those belonging to the early exit branches), commonly
referred to as backbone network. Furthermore, utilizing a
technique known as early stopping [53] allows us to refine
the training process. This strategic approach permits CNN to
terminate processing at intermediate stages, particularly when
subsequent computations would excessively increase latency.

Moreover, the establishment of layer splits, as proposed in
[19], after CNN layers, facilitates the offloading of intermediate
data to the edge server, where further computation follows. This
proves particularly beneficial in scenarios where CAVs produce
a substantial volume of tasks. The layer split architecture
empowers us to harness the computational capabilities inherent
to the CAVs, allowing for the partial processing of tasks on-
board. This, in turn, enables the edge server to accommodate an

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY 7

increased number of CAVs, each generating an extensive array
of tasks.

The efficiency of split computing is constrained by high
volume of the data generated by each intermediate layer [19],
rendering many splits impractical. To address this problem, we
enhance the CNN by autoencoders to encode the intermediate
data prior to offloading, thereby enhancing the usability of the
splits. Nonetheless, the compression facilitated by autoencoders
is inherently lossy, which invariably impacts the accuracy of our
CNN. In our novel approach, we deploy a set of autoencoders,
trained to reconstruct data, each calibrated to provide varying
degrees of compression and, correspondingly, different levels
of accuracy loss. More specifically, we introduce a dedicated
set of autoencoders for each split point, thereby enhancing the
execution flexibility of our CNN architecture and increasing the
number of viable split points for selection.

To jointly select the most suitable exit point, split, and
autoencoder for each CAV according to current environmental
conditions, we employ the MADDPG process, introduced in the
following subsections.

B. Preliminaries MADDPG

The proposed innovative cooperative framework, incorpo-
rating the enhanced CNN (see previous section), employs the
MADDPG process to enable joint cooperative selection of early
exits, splits and autoencoders. Hence, in this section, we describe
first the MADDPG and its adaption to our problem. In fact, the
MADDPG is an extension of Deep Deterministic Policy Gradi-
ent (DDPG), which is an actor-critic method learning from past
experience while exploiting different policies for exploration and
exploitation. More specifically, the DDPG is a model-free, off-
policy algorithm that uses soft updates and the Bellman equation
for training in order to maximize its own reward in single-agent
settings. The MADDPG, then, extends DDPG to multiple agents
system and, based on local observations for action selection and
global observations for value estimation, enables a decentralized
execution and centralized training.

In a multi-agent environment, each agent is represented as
the CAV with a policy network and a target policy network,
denoted as 𝜋𝑣 (𝑜𝑡 ,𝑣 |𝜃𝜋𝑣) and 𝜋′𝑣 (𝑜𝑡 ,𝑣 |𝜃𝜋′𝑣), respectively, where
𝑜𝑡 ,𝑣 is the local observation of the CAV, 𝜃𝜋𝑣 , and 𝜃𝜋′𝑣 are
the network parameters that define the current and the target
policy, respectively. Each agent also has a critic and a target
critic, which represent the centralized action-value function.
These critics are denoted as Q𝑣 (𝑜𝑡 , 𝜁𝑡 ,1, ..., 𝜁𝑡 , |V | |𝜃Q𝑣

) for the
critic network andQ′𝑣 (𝑜𝑡 , 𝜁𝑡 ,1, ..., 𝜁𝑡 , |V | |𝜃Q′𝑣) for the target critic
network, where 𝑜𝑡 represents the state for the critic. In proposed
approach, the 𝑜𝑡 represents the observations of all the CAVs as
𝑜𝑡 = (𝑜𝑡 ,1, 𝑜𝑡 ,2, ..., 𝑜𝑡 , |V |). To train the policy network 𝜋 of the
actor, we sample a replay buffer of 𝑆 samples as (𝑜 𝑗 , 𝜁 𝑗 , 𝑢 𝑗 , 𝑜

′
𝑗
),

where 𝑜′
𝑗

is the next state, and optimize the sampled gradient of
the expected return for the agent 𝑣 (e.g., 𝐽 (𝜃𝜋𝑣) = E[Φ𝑣]) as:

▽𝜃𝜋𝑣 𝐽 ≈ 1
𝑆

∑︁
𝑗

▽𝜃𝜋𝑣 𝜋𝑣 (𝑜 𝑗 ,𝑣)▽𝜁𝑣

Q𝑣 (𝑜 𝑗 , 𝜁 𝑗 ,1, ..., 𝜁 𝑗 ,𝑣 ..., 𝜁 𝑗 , |V |) |𝜁 𝑗,𝑣=𝜋𝑣 (𝑜 𝑗,𝑣) . (18)

We optimize the centralized action-value function network of
the critic by minimizing the loss function defined as [54]:

L(𝜃Q𝑣
) = 1

𝑆

∑︁
𝑗

(𝑦 𝑗 −𝑄𝑣 (𝑥 𝑗 , 𝜁 𝑗 ,1, ..., 𝜁 𝑗 , |V |))2, (19)

where

𝑦 𝑗 = 𝑢 𝑗 ,𝑣 + 𝛾Q′𝑣 (𝑜′𝑗 , 𝜁 ′𝑗 ,1, ..., 𝜁
′
𝑗 , |V |) |𝜁 ′𝑗,𝑣=𝜋′𝑣 (𝑜 𝑗,𝑣) . (20)

After training the actor and the critic, we softly update our
target networks for the actor and the critic as follows:

𝜃𝜋′𝑣 ← 𝜏𝜃𝜋𝑣 + (1 − 𝜏)𝜃𝜋′𝑣 ,
𝜃Q′𝑣 ← 𝜏𝜃Q𝑣

+ (1 − 𝜏)𝜃Q′𝑣 ,
(21)

where 𝜏 is a soft update coefficient, typically set close to 0.

C. Formulating the Problem as Markov Decision Process
Before delving deeply into the description of the proposed

MADDPG-based strategy selection algorithm, we transform
the problem into a Markov Decision Process (MDP). This
transformation is crucial as MDPs facilitate the optimization
of sequential decisions (i.e., strategy selection) by enabling
the learning of policies that maximize the utility function, as
defined in (17). The MDP is characterized by elements such as
agents, observations, actions, and rewards. These components
are delineated in a subsequent list, detailing their specific
definitions and functions within the MDP framework.

1) Agents: In the context of the MDP framework adopted in
this paper, the agents are represented by CAVs. The complete set
of CAVs is denoted by V, and each CAV 𝑣 ∈ V is considered
an individual decision-making agent within the MDP.

2) Observation Space: Upon the completion of the time
interval 𝑡, we compute the average latency of task execution
𝑡𝑡 ,𝑣 as defined in (13), the average time of task offloading
𝑡comm
𝑡 ,𝑣 , the data rate in the current time interval 𝑟𝑡 ,𝑣 , and the

task-specific requirements for latency 𝜓lat
𝑡 ,𝑣 and accuracy 𝜓acc

𝑡 ,𝑣 .
The observation for CAV for the time interval 𝑡 is subsequently
defined as:

𝑜𝑡 ,𝑣 = {𝑡𝑡 ,𝑣 , 𝑡comm
𝑡 ,𝑣 , 𝑟𝑡 ,𝑣 , 𝜓

lat
𝑡 ,𝑣 , 𝜓

acc
𝑡 ,𝑣 }. (22)

The observation space for a CAV is the set of all such possible
observations it can encounter. In the MADDPG framework,
while each agent’s actor network selects actions based on its
individual observations, the critic network has access to the
joint observation space. This joint space, which is the set of all
possible combinations of observations from all agents, is utilized
during the training phase to evaluate the joint action values and
update the actor networks. The joint observation for the time
interval 𝑡, denoted as 𝑜𝑡 , is the aggregation of the individual
observations of all CAVs, constructed as follows:

𝑜𝑡 = {𝑜𝑡 ,1, 𝑜𝑡 ,2, ..., 𝑜𝑡 , |V | }. (23)

It is important to note that while the critic uses the joint
observation space for training, each agent’s actor network makes
decisions based solely on its own observations during execution.

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY 8

3) Action space: At the beginning of the time interval 𝑡,
each CAV within the set V selects its strategy as delineated
in (1), which signifies the actions of the agents. Action space
for each agent represents the all possible values agent can
choose from, when selecting an action. During the training
phase, it is imperative to consider the actions of all other CAVs.
Consequently, the joint action of all CAVs at time interval 𝑡 is
defined as:

𝜁𝑡 = {𝜁𝑡 ,1, 𝜁𝑡 ,2, ..., 𝜁𝑡 , |V | }. (24)

This represents a specific instance of a joint action. In contrast,
the joint action space refers to the set of all possible joint actions
that the collective of CAVs could take.

4) Reward: To optimize our utility function, we employ a
reward function to evaluate the performance efficacy of the
agent, as defined in (15).

D. MADDPG-based Strategy Selection

Algorithm 1 MADDPG-based strategy selection algorithm.
Require: |V| > 1

1: 𝑇𝑚𝑎𝑥 ← maximum number of steps
2: Initialize actor networks 𝜋𝑣 (𝑜𝑣 |𝜃𝜋) and critic networks

𝑄𝑣 (𝑜, 𝜁 |𝜃𝑄) for each agent 𝑣 ∈ V with random weights
𝜃𝜋 and 𝜃𝑄

3: Initialize target networks 𝜋′𝑣 (𝑜𝑣 |𝜃𝜋′) and 𝑄′𝑣 (𝑜, 𝜁 |𝜃𝑄′) for
each agent 𝑣 ∈ V with weights 𝜃𝜋′ ← 𝜃𝜋 and 𝜃𝑄′ ← 𝜃𝑄

4: Initialize replay buffer D
5: observe initial state 𝑜0
6: P ← init Ornstein-Uhlenbeck random process
7: while 𝑡 ≤ 𝑇𝑚𝑎𝑥 do
8: for 𝑣 ∈ V do
9: Observe local observation 𝑜𝑡 ,𝑣 from state 𝑜𝑡

10: Take action 𝜁𝑡 ,𝑣 = 𝜋𝑣 (𝑜𝑡 ,𝑣 |𝜃𝜋𝑣) + P according to
actor network and noise

11: end for
12: Execute actions of all agents: 𝜁𝑡 = (𝜁𝑡 ,1, ..., 𝜁𝑡 , |V |)
13: observe reward 𝑢𝑡 and next state 𝑜′𝑡
14: Store (𝑜𝑡 , 𝜁𝑡 , 𝑢𝑡 , 𝑜′𝑡) into the replay buffer D
15: for 𝑣 ∈ V do
16: Sample a random minibatch of 𝑆 samples
(𝑜 𝑗 , 𝜁 𝑗 , 𝑢 𝑗 , 𝑜

′
𝑗
) from replay buffer D

17: Update critic by minimizing the loss (19).
18: Update actor using the sampled policy gradient (18).
19: end for
20: for 𝑣 ∈ V do
21: Softly update parameters of target networks (21).
22: end for
23: 𝑡 ← 𝑡 + 1
24: end while

The MDP is modeled as a discrete-time stochastic control
process, and a training algorithm based on MADDPG is
proposed to find the optimal policy 𝜋∗𝑣 representing a policy
towards which the CAVs are trying to optimize iteratively over
the course of 𝑇𝑚𝑎𝑥 time steps.

The MADDPG-based strategy selection algorithm is detailed
in Algorithm 1. In the initial phase, the number of time steps
𝑇𝑚𝑎𝑥 is defined (line 1), which delineates the training duration
for the agents. The actor and critic networks, along with their
target networks, are established to facilitate the subsequent
optimization process (lines 2 and 3). A replay buffer is also
created to store tuples of state, action, reward, and next state
(line 4). Before the start of the training process we observe initial
state 𝑜0 of the environment and initiate the Ornstein-Uhlenbeck
random process [55] (lines 5 and 6). This noise process is chosen
for its ability to introduce a controlled amount of randomness
into the agent’s actions, which is essential for exploring the
action space effectively. The temporally correlated nature of
the Ornstein-Uhlenbeck process ensures that exploration is
conducted in a manner that allows the agent to discover and learn
from a diverse range of experiences without making drastic,
random jumps that could lead to suboptimal learning.

Then, at each time step 𝑡 and for each CAV, the observations of
all agents are recorded as the current state (line 9). To facilitate
exploration, an Ornstein-Uhlenbeck noise process P is applied
to the action. The actions 𝜁𝑡 ,𝑣 are obtained from the actor
network with parameters 𝜃𝜋 for each agent, based on individual
observations (line 10). The action is represented by a set of
categorical values indicating the index of split, autoencoder, and
exit. To discretize the continuous output of the actor network,
multiple outputs are utilized for each category. Following the
approach in [56], Gumbel Softmax is applied to three groups
of outputs to select the appropriate category. The noise P is
added to the action, and as the agent accumulates experience and
improves its policy, the exploration rate is gradually decreased.
This reduction is crucial for transitioning the agent’s strategy
from a phase of broad exploration to a more targeted exploitation
of the learned policy, thereby enhancing the efficiency and
effectiveness of the decision-making process. Following the
actions’ execution (line 12), the next state 𝑜′𝑡 and the reward 𝑢𝑡
are observed (line 13). The transition data, which encapsulates
state 𝑜𝑡 , action 𝜁𝑡 , reward 𝑢𝑡 and next state 𝑜′𝑡 , is stored in the
replay buffer (line 14). The process is repeated until there is
sufficient data in the replay buffer for training. Subsequently, a
batch of data is sampled from the replay buffer, and the critic and
actor networks are updated using (18) and (19) (lines 15-19).
The target networks are softly updated using (21) (line 21).

In proposed MADDPG-based approach, we perform training
updates at regular intervals rather than after every time step.
Specifically, the training occurs after a predetermined number
of environment interactions. During these intervals, the agents
collect experience by interacting with the environment, and
then the neural networks are updated using this accumulated
experience.

E. Implementation Aspects of the Proposal
In this part we briefly discuss the required modifications to

CNN, training process of MADDPG, and complexity.
1) Required modifications to CNN: The modifications of the

CNN follow well-established patterns in deep learning, where
each split point uses standard autoencoder pairs (e.g., [23]) and
early exits implement conventional classification heads (e.g.,

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY 9

[27]). The approach is modular, reusing similar architectural
patterns across different points, making the implementation
straightforward. Furthermore, these modifications to the CNN
models are done during training of the CNN models and,
therefore, before CNN model’s deployment, allowing us to
allocate more time to the modification of these neural network
(i.e., inserting and training early exits and autoencoders).

2) Data Synchronization: The training process of the pro-
posed MADDPG-based strategy can be run directly at each
CAV. This approach would, however, cause substantial commu-
nication overhead due to the necessity of synchronizing replay
buffers across all the CAVs. Consequently, we propose that the
training of MADDPG-based algorithm is conducted rather on
the edge server. In such a case, CAVs only need to transmit
selected observational data (i.e., the average task latency 𝑡𝑡 ,𝑣),
from the complete set of observations 𝑜𝑡 ,𝑣 defined in (22).

Additional data for observation 𝑜𝑡 ,𝑣 , can be observed directly
from the edge server (i.e., average offloading latency 𝑡comm

𝑡 ,𝑣

and data rate 𝑟𝑡 ,𝑣). Observation 𝑜𝑡 ,𝑣 also contains latency
requirement 𝜓lat

𝑡 ,𝑣 and accuracy requirement 𝜓acc
𝑡 ,𝑣 , however,

these are only small numerical values. Furthermore, these
requirements are modified solely as necessary, allowing for the
transmission of these requirements to the edge server only when
they change their value. As a result, obtaining the observation
𝑜𝑡 ,𝑣 after each time step requires the transmission of only a few
tens of bytes.

Upon receiving a new observation 𝑜𝑡 ,𝑣 from the CAVs, their
respective actors 𝜋𝑣 predict new strategies 𝜁𝑡 ,𝑣 = 𝜋𝑣 (𝑜𝑡 ,𝑣 |𝜃𝜋𝑣).
Therefore, we need to transmit the new strategies 𝜁𝑡 ,𝑣 to the
CAVs. Given that these are three small integer values, they also
amount to only a few tens of bytes per CAV. Hence, the data
exchange required for strategy 𝜁𝑡 ,𝑣 updates is minimal and can
be disregarded when compared to the larger volume of data
involved in CNN task offloading.

3) Complexity Analysis: The time complexity of our algo-
rithm is predominantly influenced by the execution speed of the
neural networks. Analogous to the methodology presented in
[57], we compute the time complexity of neural networks as a
matrix multiplication operation between each layer. Given that
we are working with linear layers in our actor and critic networks,
we are essentially performing multiplication operations between
two one-dimensional matrices (or vectors). Consequently, the
time complexity of transitioning from layer 𝑖 to layer 𝑗 is O(𝑖 𝑗).
Considering that we are operating with minibatches comprising
𝑆 samples, it is imperative to account for the fact that each
multiplication operation will be executed 𝑆 times. Therefore,
the complexity for layers 𝑖 and 𝑗 would be O(𝑖 𝑗𝑆).

To traverse both networks consisting of 𝐼 and 𝐽 layers for
the actor and critic networks respectively, we can express the
complexity of training both as:

O((
𝐼−1∑︁
𝑖=0

𝑢𝑎,𝑖𝑢𝑎,𝑖+1 +
𝐽−1∑︁
𝑗=0

𝑢𝑐, 𝑗𝑢𝑐, 𝑗+1) ∗ 𝑆), (25)

where 𝑢𝑎,𝑖 and 𝑢𝑐, 𝑗 represent the number of neurons in the actor
and critic networks of layers 𝑖 and 𝑗 , respectively. In a production
environment, this complexity is reduced as only a single forward

propagation of an actor is required, which can be represented
as:

O(
𝐼−1∑︁
𝑖=0

𝑢𝑎,𝑖𝑢𝑎,𝑖+1). (26)

To summarize, the proposal can easily be used in real-world
scenarios since the duration of the decision-making process
(usually in the order of tens of nanoseconds) is negligible when
compared to the total latency of task execution (usually in the
order of milliseconds).

V. Simulation Results
In this section, we evaluate performance of the proposed

approach via simulations. First, we detail the simulation setup
in Section V-A. Competitive state-of-the-art works considered
for evaluation are discussed in Section V-B. Next, we present
a comparative analysis of various CNN models (i.e., models
representing our computational task) in Section V-C. Subse-
quently, we conduct an ablation study to assess the impact of
omitting specific components of our algorithm in Section V-D.
Simulation results for different levels of workload intensity,
latency requirement, and available resource blocks in Sections
V-E, V-F, and V-G, respectively.

A. Modeling and setting for evaluation
Inspired by other works, such as [25], [26], we utilize the

VGG-16 architecture [52] and the AlexNet architecture [58], as a
model of the computer vision task based on CNN for offloading.
We select these models due to their well-established nature and
extensive study in the field, see e.g., [59], [60], demonstrating
that these architectures remain relevant in related studies. How-
ever, the proposed approach can be extended to any computer
vision task and deep learning model, including transformer-
based models that can be adapted for splitting and early exiting
capabilities, as comprehensively discussed in [30]. The VGG-16
structure comprises 16 layers, including 13 convolutional and 3
linear layers. Furthermore, CNN incorporates 5 average pooling
layers. The CNN is trained on the CIFAR-10 dataset [61], a
common benchmark in the image classification. The AlexNet
architecture consists of 8 layers, featuring 5 convolutional layers,
and 3 fully connected layers. AlexaNet incorporates 3 max
pooling layers and uses dropout for regularization.

In the offline configuration, we enhance the CNN models
with three early exits approximately at 25%, 50%, and 75%
of the model’s computational complexity (i.e., after 2nd, 4th,
and 7th convolutional layer) for VGG-16 architecture. Given
AlexNet’s smaller size, we implement a single early exit at 50%
of computational complexity, specifically after the 3rd layer.
Additionally, we introduce 21 splits across the VGG-16 CNN
model and 10 splits across the AlexNet CNN model, ensuring a
split after each convolutional layer, first pooling layers, input and
output layers (note, that the output layer implies that the entire
computational task is processed locally by the CAV) and after
each early exit, as shown in Fig. 2. The decision to exclude the
splits following the final average pooling layer and in-between
linear layers is done due to their relatively lower computational
demand when compared with the convolutional layers. Further-
more, both CNN models include eight autoencoders at each split,

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY 10

Fig. 3: Rewards for proposed method during training process
under different learning rates values, where actor and critic had
the same learning rate and with |Z𝑡 ,𝑣 | = 150, 𝑊acc

𝑣 = 0.9,
𝑊 lat

𝑣 = 1, 𝜓lat
𝑡 ,𝑣 = 6.5ms.

each autoencoder with a unique compression level. Note, that
we select eight autoencoders after extensive testing of various
autoencoders, utilizing similar technique as [23]. Selection of
eight autoencoders provides the most suitable trade-off between
accuracy and latency. Additionally, this quantity is a good choice
for applying MADDPG to effectively find the optimal policy. A
smaller number would not offer sufficient variability for robust
policy development while a larger count would complicate the
action space, hindering the strategy optimization.

Similarly to [62], we fine-tune the MADDPG algorithm by
employing grid search methodology to identify optimal hyper-
parameters. The results of the search for the optimal learning
rate are illustrated in Fig. 3. Note that we chose to illustrate
the effect of the learning rate, as it is widely recognized as one
of the most crucial and extensively studied hyperparameters in
reinforcement learning. This significance is well-documented
in relevant research literature (e.g., [63]). It is observed that the
values lr = 0.001, lr = 0.0007, and lr = 0.003 yield the highest
rewards. Initially, these parameters are assigned high negative
values to ensure that the agents are penalized should they diverge
significantly from the specific requirements of the task. Notably,
all three learning rate values mentioned above attain positive
rewards at around 6000 steps, indicating that commendable
balance between accuracy and latency is established. The actor
network’s architecture is structured as follows: It receives an
input 𝑜𝑡 ,𝑣 with |𝑜𝑡 ,𝑣 | input neurons, followed by three fully
connected hidden layers of sizes 400, 300, and 300 neurons
respectively. The output layer produces an action sequence 𝜁𝑡 ,𝑣 ,
with the number of output neurons corresponding to size |𝜁𝑡 ,𝑣 |.
The critic network features a larger input dimension of |𝑜𝑡 |+ |𝜁𝑡 |,
where |𝑜𝑡 | encompasses the combined input size |𝑜𝑡 ,𝑣 | for all
vehicles 𝑣 ∈ V, and |𝜁𝑡 | represents the all actions |𝜁𝑡 ,𝑣 | across all
vehicles 𝑣 ∈ V. All layers in both networks are implemented as
linear layers. This design choice is motivated by computational
efficiency considerations - using (7), we can estimate that
linear layers require fewer computational operations compared

300 m

3
0

0
 m

Base Station

CAVs

Fig. 4: Schematic representation of the analyzed urban traffic
scenario for result evaluation.

to convolutional alternatives. As a result, our actor network’s
execution latency is several orders of magnitude lower than
our computational tasks (i.e., VGG-16 and AlexNet models)
making this approach applicable to the real-world scenarios.
The selected hyperparameter values are documented in Table
II. The search for the optimal remaining hyperparameters was
conducted in a manner analogous to that for the learning rate
illustrated in Fig. 3.

Our CAVs operate within a Manhattan road network, char-
acterized by the grid-like structure depicted in Fig. 4. This
urban topology has been extensively studied (e.g., [64], [65])
due to its accurate representation of typical urban street layouts,
providing a realistic framework for evaluating CAV performance
in metropolitan environments. Within this network, CAVs
movements are modeled using the Manhattan mobility model
[66], which aligns with the grid-based nature of the environment.
Demonstrating the results within an urban scenario presents
a realistic and challenging environment for VEC, showcasing
the robustness and applicability of the proposed approach. To
simulate path-loss, the Hata model is employed. This model is
recognized as a conventional model for the estimation of path-
loss in both rural and urban settings [67].

A series of 10 independent simulations is conducted with each
simulation of a duration of 2,000 time steps. This approach fa-
cilitates a comprehensive exploration of the stochastic processes
under study. The execution of these 2,000 steps follows after the
training of agents over 13,000 steps. The duration of 13,000 steps
is a sufficient training period to accommodate the complexities
of the environment and the agent’s learning process. The full
details of the system parameters are in Table III.

Our proposed approach is first evaluated for two different
CNN models, followed by an evaluation through ablation anal-
ysis, and finally by varying: (i) workload intensity represented
by the number of tasks generated per second |Z𝑡

𝑣 | by individual
CAVs; (ii) the latency requirement𝜓lat

𝑡 ,𝑣; and (iii) communication

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY 11

TABLE II: MADDPG hyperparameters

Parameter Value
Actor learning rate 10−3

Critic learning rate 10−3

Soft update coefficient (𝜏) 0.01
Discount factor (𝛾) 0.9

Memory size 105

Batch size 64
Actor Network Configuration { |𝑜𝑡,𝑣 |, 400, 300, 300, |𝜁𝑡,𝑣 |}
Critic Network Configuration { |𝑜𝑡 | + |𝜁𝑡 |, 400, 300, 300, 1}

TABLE III: Simulation setup

Parameter Value
Number of resource blocks (𝑁𝑅𝐵) 100, 200

Symbol rate (𝑅) 2 ∗ 109

Computational power of CAV 𝑣 (𝜂𝑣) 28.6 ∗ 109

Computational power of edge server 𝑏 (𝜂𝑏) 41.3 ∗ 1012

Number of tasks per 𝑡 (|Z𝑡,𝑣 |) 50, 180
Number of CAVs (|V |) 10
Latency weight (𝑊 lat

𝑣) 1, 0.5
Accuracy weight (𝑊acc

𝑣) 0.9, 0.25, 0.15
Accuracy requirement (𝜓acc

𝑡,𝑣) 0.82
Number of training steps 13,000

Number of simulation steps 2,000
Number of simulations 10

resource availability modeled via the available bandwidth of the
connection (i.e., the number of available resource blocks 𝑁RB).
We also investigate the impact of the accuracy weight 𝑊acc

𝑣

and latency weight 𝑊 lat
𝑣 , as these are crucial in determining the

performance of the proposed algorithm and different values may
offer advantages under various conditions.

B. Competitive state-of-the-art works
We compare the proposed approach with the following state-

of-the-art benchmarks for the selection of split and early exit:
1) Edge ML [26]: Edge ML is a deep reinforcement learning-

based approach that aims to minimize latency and energy
consumption. It uses the DDPG algorithm, where the state
space consists of latency, energy, and current transmission
rate. The actions determine the confidence thresholds for
early exits (i.e., confidence the prediction needs at early
exits to stop execution), split point, and time interval for
the selected strategy. Unlike our approach, Edge ML does
not use autoencoders to create an artificial bottleneck for
offloading data compression. Furthermore, the authors
employ only a single-agent DDPG algorithm to determine
the optimal strategy, hence, other agents are treated as
non-stationary noise within the simulation. The Edge ML
employs a DDPG-based algorithm, implying that the time
complexity can be characterized in a manner analogous
to our proposed approach.

2) Edge AI [25]: Edge AI is a search-based approach that
iterates over all possible combinations of early exits and
splits in the CNN. To estimate the execution time of the
CNN on both the CAV and the edge server, the Edge
AI baseline utilizes a regression model. This regression
model is executed iteratively for each split point, first to
determine the performance on the CAV and subsequently

(a) Accuracy 𝜇𝑡 ,𝑣 and latency 𝑡𝑡 ,𝑣 evaluation on AlexNet architecture.

(b) Accuracy 𝜇𝑡 ,𝑣 and latency 𝑡𝑡 ,𝑣 evaluation on VGG-16 architecture.

Fig. 5: Cross-Model performance evaluation on VGG-16 and
AlexNet architectures with 𝜓acc

𝑡 ,𝑣 = 0.9, 𝜓lat
𝑡 ,𝑣 = 6.5ms, |Z𝑡 ,𝑣 | =

150 and 𝑁RB = 200.

on the edge server. Searching from the last to the first exit
and split points, Edge AI prioritizes the highest accuracy
while meeting the latency requirements. Furthermore,
no compression techniques, such as autoencoders, are
employed by Edge AI. The Edge AI utilizes a conventional
exhaustive search coupled with a regression model to
predict the execution time of the model. In the worst-
case scenario, the time complexity of this approach is
O((2𝑑)𝑙 |𝐸 |), where 𝑑 represents the number of features
for the regression model (which is executed twice to
predict the model execution time on both the edge server
and the CAV), 𝑙 denotes the number of layers, and
|𝐸 | signifies the number of exits of the CNN model.
The time complexity of the Edge AI baseline exhibits
polynomial growth, which is dependant upon the chosen
CNN architecture (e.g., VGG16), representing our task.
Specifically, an increase in the CNN architecture’s size
directly impacts the time complexity of Edge AI approach.
In contrast, the proposed method demonstrates invariance
to the size of the CNN architecture, maintaining consistent
complexity regardless of the CNN architecture chosen.

3) Server only: In the Server only approach, input data is
immediately offloaded to the server and processing of the
whole taks is done at the server.

All the baselines and the proposed approach consider the
same CNN architecture representing the computing task within
the scope of simulations. This ensures comparability in the
evaluation of the selected metrics related to the task offloading.

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY 12

Fig. 6: Ablation Analysis on Proposed Approach with 𝑊 lat𝑣 =

0.5, 𝑊acc𝑣 = 0.9, 𝜓acc
𝑡 ,𝑣 = 0.9, 𝜓lat

𝑡 ,𝑣 = 6.5ms, |Z𝑡 ,𝑣 | = 150 and
𝑁RB = 200.

C. Cross-Model Performance Evaluation
In this section, we compare AlexNet and VGG-16 architec-

tures using requirements 𝜓acc ∗ 𝑡, 𝑣 = 0.9 and 𝜓lat ∗ 𝑡, 𝑣 = 6.5
ms. The proposed approach is compared against baselines using
two weight configurations: accuracy-prioritizing (𝑊 lat𝑣 = 0.5,
𝑊acc𝑣 = 0.9) and latency-prioritizing (𝑊 lat𝑣 = 1, 𝑊acc𝑣 =

0.15).
Results are shown in Fig. 5. We evaluate accuracy 𝜇𝑡 ,𝑣 ,

CAV latency 𝑡comp𝑧, 𝑣, and offloading latency 𝑡comm𝑧. Server
execution latency 𝑡comp𝑧, 𝑏 is omitted due to being several
magnitudes lower than CAV processing latency 𝑡comp𝑧, 𝑣 and
offloading latency 𝑡comm

𝑧 .
The evaluation of AlexNet (Fig. 5a) shows the proposed

approach achieves 𝑡𝑡 ,𝑣 = 4.79 ms latency and 𝜇𝑡 ,𝑣 = 80.48%
accuracy, improving upon baselines by up to 18.79% and 7.76%
respectively. While Edge ML and Edge AI determine that full
offloading is more beneficial for AlexNet, the proposed approach
uniquely leverages CAVs’ computational capabilities through
appropriate autoencoder selection and optimal split points.

When analyzing VGG-16 (Fig. 5b), the proposed approach
achieves 𝑡𝑡 ,𝑣 = 5.52 ms latency and 𝜇𝑡 ,𝑣 = 82.35% accuracy,
showing improvements up to 10.97% and 7.52% respectively.
These results indicate that VGG-16 architecture, being larger
and more complex model, presents a greater computational
challenge that benefits more from split computing and early
exiting. Unlike with AlexNet, even baseline approaches utilize
CAVs’ computational power for VGG-16, making it a more
relevant benchmark for comparing the proposed approach
against baselines. Consequently, for the remainder of the results,
we consider the VGG-16 model as our computational task.

D. Ablation Analysis
In this section, we analyze the performance of our approach

by systematically altering the capabilities of the VGG-16 CNN
model. We perform an ablation study by selectively removing
different components while keeping others intact. We begin
by examining the system without splits, which consequently
eliminates autoencoders but retains early exits. In this scenario,
we consider two cases: always offloading to the server and
computing the entire task on the device. Next, we restore splits
but remove the capability of dynamically choosing autoencoders

for compression. Instead, we present three fixed options: no
compression, highest compression, and lowest compression.
Last, we examine the system with splits and dynamic autoen-
coder selection, but without the capability of early exiting. This
approach allows us to isolate the impact of each component on
the overall system performance.

As shown in Fig. 6, the introduction of early exits without
splits lowers accuracy compared to the Server only approach.
This is because the system attempts to reduce latency, but since
execution on the server is already fast, the latency reduction
is minimal. When executing tasks on the CAV, we observe
higher latency and lower accuracy due to the CAV’s limited
computational capabilities.

Our analysis of compression levels reveals that no com-
pression yields the lowest latency and accuracy. This is since
proposed approach executes most of the tasks on the CAV.
Introducing compression significantly improves accuracy. The
lowest compression setting still results in relatively high latency
of 7.01 ms, while the highest compression setting trades off
about 4.47% accuracy for a 1.7 ms latency improvement. These
results suggest that excessive compression can significantly
reduce the CNN model’s (e.g., VGG-16) accuracy, while
insufficient compression may result in unacceptable latency.
Therefore, it is crucial to optimize the compression rate by
carefully selecting an appropriate autoencoder, considering the
application-specific latency and accuracy requirements. The
proposed approach without early exits achieves performance
similar to the that exhibited by the full proposed approach, as
shown in Fig. 5b. These results demonstrate that the ability to
select an appropriate early exit when necessary can significantly
improve accuracy (by 3.02% in our tests) while also slightly
reducing latency (by 0.04ms), highlighting the value of this
feature within the proposed approach.

This analysis demonstrates that each component plays a
crucial role in the performance of our proposed approach. The
ablation study reveals that the combination of splits, dynamic
autoencoder selection, and early exits significantly contributes
to the system’s overall performance and efficiency.

E. Workload intensity
At this stage, we systematically increase the number of tasks
|Z𝑡 ,𝑣 | generated during each time interval 𝑡 for all CAVs.
Increasing the task generation rate necessitates a proportional
reduction in latency requirements 𝜓lat

𝑡 ,𝑣 to ensure the task
processing remains uninterrupted. This adjustment is critical
to prevent the task overflow and maintain operational integrity,
particularly as the volume of tasks scales up. The latency
requirement is thus calibrated to the task generation frequency
(i.e., 𝜓lat

𝑡 ,𝑣 = 𝑡
|Z𝑡,𝑣 |), enabling the system to accommodate a

higher throughput of tasks without compromising performance.
The outcomes of the simulations are depicted in Fig. 7.

As depicted in Fig. 7a, an increase in the number of
generated tasks |Z𝑡 ,𝑣 | cause a decline in the accuracy of the
task processing 𝜇𝑡 ,𝑣 . This fact is attributed to the algorithm’s
selection of autoencoders with elevated compression ratios
to accommodate the additional tasks. Moreover, an increase
in demands correlates with an increase in the volume of

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY 13

(a) Accuracy 𝜇𝑡 ,𝑣 under different levels of
tasks generated per second |Z𝑡 ,𝑣 |.

(b) Latency 𝑡𝑡 ,𝑣 under different levels of tasks
generated per second |Z𝑡 ,𝑣 |.

(c) Dropped tasks ratio under different levels
of tasks generated per second |Z𝑡 ,𝑣 |.

Fig. 7: Impact of workload intensity in tasks per second |Z𝑡 ,𝑣 | with 𝑊 lat
𝑣 = 1, 𝑊acc

𝑣 = 0.15 and 𝑁RB = 200.

(a) Accuracy 𝜇𝑡 ,𝑣 under different levels of
latency requirement 𝜓lat

𝑡 ,𝑣 .
(b) Latency 𝑡𝑡 ,𝑣 under different levels of
latency requirement 𝜓lat

𝑡 ,𝑣 .
(c) Reward under different levels of latency
requirement 𝜓lat

𝑡 ,𝑣 .

Fig. 8: Performance evaluation at different levels of latency requirement 𝜓lat
𝑡 ,𝑣 with 𝑊 lat

𝑣 = 0.5, 𝑊acc
𝑣 = 0.25, |Z𝑡 ,𝑣 | = 50 and

𝑁RB = 100.

tasks that are dropped (refer to Fig. 7c), which consequently
diminishes accuracy 𝜇𝑡 ,𝑣 . For instance, at the task generation
rate |Z𝑡 ,𝑣 | = 210, all baselines fail to maintain any level of
accuracy. i.e., 𝜇𝑡 ,𝑣 = 0%, whereas the proposed approach still
achieves the accuracy of 𝜇𝑡 ,𝑣 = 60.5%. This disparity arises
from the inability of other methods to manage the increased
demand, resulting in the dropout of all tasks. Conversely, when
the task generation rate |Z𝑡 ,𝑣 | = 150, the proposal slightly
underperforms Edge AI and Edge ML in terms of accuracy. This
is due a result of the prioritization of tasks latency minimization
by the proposal.

Furthermore, Fig. 7b demonstrates that the task latency 𝑡𝑡 ,𝑣
for the proposal is reduced notably compared to all benchmarks.
While the latency increases exponentially for all benchmarks,
the proposal leads to relatively stable task latency 𝑡𝑡 ,𝑣 with only
a slow and almost linear increase with the number of generated
tasks. The significant improvement in the latency by the proposal
results the proposed multi-agent design, which allows CAVs to
collaborate and compute larger segments of the task on CAV.
The proposed method is able to achieve up to 44.4% lower
latency 𝑡𝑡 ,𝑣 compared to the baselines.

F. Latency Requirement
In the next set of simulations, we gradually reduce the

latency requirements 𝜓lat
𝑡 ,𝑣 to examine effects of the latency

requirement 𝜓lat
𝑡 ,𝑣 on the algorithms’ performance (i.e., impact

on accruacy 𝜇𝑡 ,𝑣 and latency 𝑡𝑡 ,𝑣) in low intensity environment
of |Z𝑡 ,𝑣 | = 50. With |Z𝑡 ,𝑣 | = 50, we demonstrate how the
proposed approach and baselines adapt to varying application
latency requirements 𝜓lat

𝑡 ,𝑣 . As the latency requirement 𝜓lat
𝑡 ,𝑣

should not be higher than the task generation period to avoid
hindering task execution, this lower task generation rate allows
us to explore a broader range of latency requirements 𝜓lat

𝑡 ,𝑣 .
This approach provides insights into system performance across
diverse operational scenarios. The outcomes of simulations are
depicted in Fig. 8.

As depicted in Fig. 8a, the proposed approach as well as all
benchmarks yield the accuracy 𝜇𝑡 ,𝑣 safely above the required
accuracy 𝜓acc

𝑡 ,𝑣 = 0.82 (see Table III). The accuracy reached by
the proposal is marginally lower than the accuracy reached by
Edge AI and Server only. Nevertheless, a slightly lower accuracy
of the proposal compared to benchamrks is insignificant and
meaningless, since the required accuracy is fulfilled. A small
increase in accuracy 𝜇𝑡 ,𝑣 is observed for all baselines, including
the proposed approach, as latency requirement 𝜓lat

𝑡 ,𝑣 increases.
This is attributed to the selection of later exits 𝑒𝑡 ,𝑣 across all
baselines, coupled with the utilization of autoencoders 𝑎𝑠𝑡,𝑣 ,𝑡 ,𝑣
with lower compression within the proposed approach.

Fig. 8b shows, that the latency 𝑡𝑡 ,𝑣 increases with the latency
requirement 𝜓lat

𝑡 ,𝑣 . The latency for the proposal escalates at a
lower rate in comparison to the Edge ML baseline, as such, the
proposed approach is able to achieve latency 𝑡𝑡 ,𝑣 improvement

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY 14

(a) Accuracy 𝜇𝑡 ,𝑣 under different amount of
resource blocks available 𝑁RB.

(b) Latency 𝑡𝑡 ,𝑣 under different amount of
resource blocks available 𝑁RB.

(c) Dropped task ratio under different amount
of resource blocks available 𝑁RB.

Fig. 9: Performance evaluation at different levels of resource block availability 𝑁RB with 𝑊 lat
𝑣 = 1, 𝑊acc

𝑣 = 0.15, 𝜓lat
𝑡 ,𝑣 = 5.5ms and

|Z𝑡 ,𝑣 | = 180.

of up to 36.67% relative to the baselines.
In the low workload intensity |Z𝑡 ,𝑣 | = 50 and low latency

requirement 𝜓lat
𝑡 ,𝑣 , neither the baselines nor the proposed ap-

proach drop any task. Consequently, we present a graphs of the
reward function 𝑢𝑡 ,𝑣 , as delineated in (15), within Fig. 8c. As
depicted in Fig. 8c, all the baselines as well as the proposed
approach exhibit a growth in the reward 𝑢𝑡 ,𝑣 with increasing
latency requirement 𝜓lat

𝑡 ,𝑣 . This growth indicates that an increase
in the latency requirement 𝜓lat

𝑡 ,𝑣 correlates with an increased
satisfaction balance between the accuracy 𝜇𝑡 ,𝑣 and the latency
𝑡𝑡 ,𝑣 . Notably, the proposed approach attains the highest reward
𝑢𝑡 ,𝑣 at all points of the graph, achieving a reward 𝑢𝑡 ,𝑣 that is up
to 91.6% superior in comparison to the baselines.

As illustrated in all sub-figures Fig. 8a – Fig. 8c, the Server
only approach maintains a consistent level of the accuracy 𝜇𝑡 ,𝑣
and the latency 𝑡𝑡 ,𝑣 across all investigated points. This uniformity
is attributed to its invariance to changes in latency requirements
𝜓lat
𝑡 ,𝑣 .

G. Communication Resource

Next, we create a high-intensity environment, where 180 tasks
are generated per time interval 𝑡 for all CAVs 𝑣 ∈ V. To this end,
we intentionally increase the available data rate, as defined in (2),
by varying the allocation of resource blocks 𝑁RB for the CAVs.
The rationale behind high-intensity environment choice lies in
the need to stress-test the communication resources. In low-
intensity environments, the demand for high communication
resources might not be as critical. Results of the simulations are
shown in Fig. 9.

As the number of resource blocks 𝑁RB is increased, a
reduction in latency is observed (see Fig. 9b), attributable to
a decreased time required for the task offloading. Moreover,
the integration of autoencoder selection within the proposed
method leads to a significantly faster task offloading process
and to a consequent latency reduction 𝑡𝑡 ,𝑣 of up to 23.27%.
It is noteworthy that the Edge ML and Edge AI baselines
yield only marginal improvements in comparison to the Server
only approach. This marginal enhancement is primarily due
to baselines choosing to execute the entire tasks on the edge
server, hence the improved latency is largely attributed to early

exiting. This is because neither Edge ML nor Edge AI are able
to find a splitting strategy that met the latency requirement
𝜓lat
𝑡 ,𝑣 = 5.5𝑚𝑠, defaulting to full task offloading instead. This

demonstrates the advantage of our proposed approach, which,
through comprehensive weighing of accuracy 𝜓acc

𝑡 ,𝑣 and latency
𝜓lat
𝑡 ,𝑣 , found an optimal solution despite a larger action space

compared to Edge ML (as Edge ML does not select an
appropriate autoencoder).

Additionally, an increase in the number of resource blocks
𝑁RB correlates with a decrease in the ratio of dropped tasks,
as shown in Fig. 9c. This, in turn, leads to an increment in
the accuracy 𝜇𝑡 ,𝑣 , as depicted in Fig. 9a. The proposed method
increases the accuracy 𝜇𝑡 ,𝑣 of up to 36.6% compared to the
baselines, while concurrently achieving a superior task drop
rate reduction of up to 53.34%.

VI. Conclusion
In this paper, we have proposed a novel approach to

joint strategy selection, encompassing determination of early
exits, splits, and autoencoders for processing of the CNN-
based computer vision tasks of CAVs. The proposed method
leverages the MADDPG-based algorithm to identify the optimal
strategy. Selection of the task processing strategy by each CAVs
inevitably impacts the task processing of other CAVs. To address
this interdependency, we introduce a cooperative multi-agent
learning paradigm, where the CAVs implicitly incorporate the
actions and states of other CAVs when learning to make strategic
decisions. The cooperative approach enables the CAVs to
maximize not only their own utility function, but also the utility
of other CAVs. Simulation results demonstrate that the proposal
lowers the latency compared the state-of-the-art baselines, while
simultaneously minimizing the occurrence of dropped tasks in
high-intensity, low-connectivity environments. Furthermore, we
show that the proposed method maintains comparable accuracy
and lower latency compared to state-of-the-art works even in
low-intensity scenarios. The proposed approach also achieves
highest values for the utility function, resulting in the most
desirable accuracy-latency trade-off.

Our approach exhibits versatility and can be effectively
implemented across a wide spectrum of CNN-based tasks. How-
ever, extending the proposed approach to explore other critical

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY 15

computer vision tasks, such as semantic segmentation and object
detection is a future challenge. Further research endeavors could
also delve into deploying this algorithm within non-standard
CNN architectures, including multi-head architectures, such as
[68].

References

[1] S. Atakishiyev, M. Salameh, H. Yao, and R. Goebel, “Explainable artificial
intelligence for autonomous driving: A comprehensive overview and field
guide for future research directions,” arXiv preprint arXiv:2112.11561,
2021.

[2] S. Raza, S. Wang, M. Ahmed, M. R. Anwar, et al., “A survey on vehicular
edge computing: architecture, applications, technical issues, and future
directions,” Wireless Communications and Mobile Computing, vol. 2019,
2019.

[3] S. Kuutti, R. Bowden, Y. Jin, P. Barber, and S. Fallah, “A survey of deep
learning applications to autonomous vehicle control,” IEEE Transactions
on Intelligent Transportation Systems, vol. 22, no. 2, pp. 712–733, 2021.

[4] A. Voulodimos, N. Doulamis, A. Doulamis, E. Protopapadakis, et al.,
“Deep learning for computer vision: A brief review,” Computational
intelligence and neuroscience, vol. 2018, 2018.

[5] Ò. Lorente, I. Riera, and A. Rana, “Image classification with classic and
deep learning techniques,” arXiv preprint arXiv:2105.04895, 2021.

[6] H. Ajmal, S. Rehman, U. Farooq, Q. U. Ain, F. Riaz, and A. Hassan,
“Convolutional neural network based image segmentation: a review,”
Pattern Recognition and Tracking XXIX, vol. 10649, pp. 191–203, 2018.

[7] C. Szegedy, A. Toshev, and D. Erhan, “Deep neural networks for object
detection,” Advances in neural information processing systems, vol. 26,
2013.

[8] L. Liu, S. Lu, R. Zhong, B. Wu, Y. Yao, Q. Zhang, and W. Shi, “Computing
systems for autonomous driving: State of the art and challenges,” IEEE
Internet of Things Journal, vol. 8, no. 8, pp. 6469–6486, 2020.

[9] L. Liu, C. Chen, Q. Pei, S. Maharjan, and Y. Zhang, “Vehicular edge
computing and networking: A survey,” Mobile networks and applications,
vol. 26, pp. 1145–1168, 2021.

[10] W. Fan, Y. Su, J. Liu, S. Li, W. Huang, F. Wu, and Y. Liu, “Joint task
offloading and resource allocation for vehicular edge computing based on
V2I and V2V modes,” IEEE Transactions on Intelligent Transportation
Systems, vol. 24, no. 4, pp. 4277–4292, 2023.

[11] S. Li, N. Zhang, H. Chen, S. Lin, O. A. Dobre, and H. Wang, “Joint road
side units selection and resource allocation in vehicular edge computing,”
IEEE Transactions on Vehicular Technology, vol. 70, no. 12, pp. 13190–
13204, 2021.

[12] S. Wang, J. Li, G. Wu, H. Chen, and S. Sun, “Joint optimization of
task offloading and resource allocation based on differential privacy in
vehicular edge computing,” IEEE Transactions on Computational Social
Systems, vol. 9, no. 1, pp. 109–119, 2021.

[13] Z. Xue, C. Liu, C. Liao, G. Han, and Z. Sheng, “Joint service caching
and computation offloading scheme based on deep reinforcement learning
in vehicular edge computing systems,” IEEE Transactions on Vehicular
Technology, 2023.

[14] X. Huang, L. He, and W. Zhang, “Vehicle speed aware computing task
offloading and resource allocation based on multi-agent reinforcement
learning in a vehicular edge computing network,” in 2020 IEEE Interna-
tional Conference on Edge Computing (EDGE), pp. 1–8, IEEE, 2020.

[15] L. Alzubaidi, J. Zhang, A. J. Humaidi, A. Al-Dujaili, Y. Duan, O. Al-
Shamma, J. Santamarı́a, M. A. Fadhel, M. Al-Amidie, and L. Farhan,
“Review of deep learning: Concepts, CNN architectures, challenges,
applications, future directions,” Journal of big Data, vol. 8, pp. 1–74,
2021.

[16] S. Chatterjee, P. Tummala, O. Speck, and A. Nürnberger, “Complex
network for complex problems: A comparative study of CNN and complex-
valued CNN,” in 2022 IEEE 5th International Conference on Image
Processing Applications and Systems (IPAS), pp. 1–5, IEEE, 2022.

[17] K. Lu, R.-D. Li, M.-C. Li, and G.-R. Xu, “MADDPG-based joint
optimization of task partitioning and computation resource allocation in
mobile edge computing,” Neural Computing and Applications, pp. 1–18,
2023.

[18] X. Tang, X. Chen, L. Zeng, S. Yu, and L. Chen, “Joint multiuser DNN
partitioning and computational resource allocation for collaborative edge
intelligence,” IEEE Internet of Things Journal, vol. 8, no. 12, pp. 9511–
9522, 2020.

[19] Y. Kang, J. Hauswald, C. Gao, A. Rovinski, T. Mudge, J. Mars, and
L. Tang, “Neurosurgeon: Collaborative intelligence between the cloud
and mobile edge,” ACM SIGARCH Computer Architecture News, vol. 45,
no. 1, pp. 615–629, 2017.

[20] A. Malawade, M. Odema, S. Lajeunesse-DeGroot, and M. A. Al Faruque,
“Sage: A split-architecture methodology for efficient end-to-end au-
tonomous vehicle control,” ACM Transactions on Embedded Computing
Systems (TECS), vol. 20, no. 5s, pp. 1–22, 2021.

[21] A. E. Eshratifar, M. S. Abrishami, and M. Pedram, “JointDNN: An efficient
training and inference engine for intelligent mobile cloud computing
services,” IEEE Transactions on Mobile Computing, vol. 20, no. 2,
pp. 565–576, 2019.

[22] S. Tuli, G. Casale, and N. R. Jennings, “SplitPlace: AI augmented
splitting and placement of large-scale neural networks in mobile edge
environments,” IEEE Transactions on Mobile Computing, 2022.

[23] A. E. Eshratifar, A. Esmaili, and M. Pedram, “BottleNet: A deep learning
architecture for intelligent mobile cloud computing services,” in 2019
IEEE/ACM International Symposium on Low Power Electronics and
Design (ISLPED), pp. 1–6, 2019.

[24] Y. Matsubara, R. Yang, M. Levorato, and S. Mandt, “SC2 benchmark:
Supervised compression for split computing,” Transactions on machine
learning research, 2023.

[25] E. Li, L. Zeng, Z. Zhou, and X. Chen, “Edge AI: On-demand accelerating
deep neural network inference via edge computing,” IEEE Transactions
on Wireless Communications, vol. 19, no. 1, pp. 447–457, 2020.

[26] Z. Zhao, K. Wang, N. Ling, and G. Xing, “EdgeML: An autoML
framework for real-time deep learning on the edge,” IoTDI ’21, (New
York, NY, USA), p. 133–144, Association for Computing Machinery,
2021.

[27] S. Teerapittayanon, B. McDanel, and H. Kung, “BranchyNet: Fast
inference via early exiting from deep neural networks,” in 2016 23rd
International Conference on Pattern Recognition (ICPR), pp. 2464–2469,
2016.

[28] S. Scardapane, M. Scarpiniti, E. Baccarelli, and A. Uncini, “Why should
we add early exits to neural networks?,” Cognitive Computation, vol. 12,
no. 5, pp. 954–966, 2020.

[29] A. K. Kosta, M. A. Anwar, P. Panda, A. Raychowdhury, and K. Roy,
“RAPID-RL: A reconfigurable architecture with preemptive-exits for
efficient deep-reinforcement learning,” in 2022 International Conference
on Robotics and Automation (ICRA), pp. 7492–7498, IEEE, 2022.

[30] Y. Matsubara, M. Levorato, and F. Restuccia, “Split computing and early
exiting for deep learning applications: Survey and research challenges,”
ACM Computing Surveys, vol. 55, no. 5, pp. 1–30, 2022.

[31] N. J. Zakaria, M. I. Shapiai, R. A. Ghani, M. Yasin, M. Z. Ibrahim, and
N. Wahid, “Lane detection in autonomous vehicles: A systematic review,”
IEEE Access, 2023.

[32] Y. Satılmış, F. Tufan, M. Şara, M. Karslı, S. Eken, and A. Sayar,
“CNN based traffic sign recognition for mini autonomous vehicles,”
in Information Systems Architecture and Technology: Proceedings of
39th International Conference on Information Systems Architecture and
Technology–ISAT 2018: Part II, pp. 85–94, Springer, 2019.

[33] W. Song, Y. Yang, M. Fu, F. Qiu, and M. Wang, “Real-time obstacles
detection and status classification for collision warning in a vehicle active
safety system,” IEEE Transactions on intelligent transportation systems,
vol. 19, no. 3, pp. 758–773, 2017.

[34] J. Chen, Y. Leng, and J. Huang, “An intelligent approach of task offloading
for dependent services in mobile edge computing,” Journal of Cloud
Computing, vol. 12, no. 1, p. 107, 2023.

[35] 3GPP, “Nr; physical channels and modulation,” 3rd Generation Partner-
ship Project (3GPP), Technical Specification (TS) 38.211, vol. 9, 2018.

[36] V. Rajagopalan, Z. Jiang, J. Stojanovic-Radic, G. Yue, E. P. Pioro,
G. Wylie, and A. Das, “A basic introduction to diffusion tensor imaging
mathematics and image processing steps,” Brain Disord Ther, vol. 6,
no. 229, p. 2, 2017.

[37] Z. Li, F. Liu, W. Yang, S. Peng, and J. Zhou, “A survey of convolutional
neural networks: analysis, applications, and prospects,” IEEE transactions
on neural networks and learning systems, 2021.

[38] D. Mukunoki and T. Imamura, “Reduced-precision floating-point formats
on GPUs for high performance and energy efficient computation,” in
2016 IEEE International Conference on Cluster Computing (CLUSTER),
pp. 144–145, 2016.

[39] S. Albawi, T. A. Mohammed, and S. Al-Zawi, “Understanding of a
convolutional neural network,” in 2017 international conference on
engineering and technology (ICET), pp. 1–6, Ieee, 2017.

[40] A. B. de Souza, P. A. L. Rego, T. Carneiro, P. H. G. Rocha, and J. N.
de Souza, “A context-oriented framework for computation offloading

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY 16

in vehicular edge computing using wave and 5G networks,” Vehicular
Communications, vol. 32, p. 100389, 2021.

[41] J. Zhou, D. Tian, Z. Sheng, X. Duan, and X. Shen, “Distributed task
offloading optimization with queueing dynamics in multiagent mobile-
edge computing networks,” IEEE Internet of Things Journal, vol. 8,
no. 15, pp. 12311–12328, 2021.

[42] Y. Mao, J. Zhang, and K. B. Letaief, “Dynamic computation offloading for
mobile-edge computing with energy harvesting devices,” IEEE Journal
on Selected Areas in Communications, vol. 34, no. 12, pp. 3590–3605,
2016.

[43] A. Bozorgchenani, S. Maghsudi, D. Tarchi, and E. Hossain, “Computation
offloading in heterogeneous vehicular edge networks: On-line and off-
policy bandit solutions,” IEEE Transactions on Mobile Computing,
vol. 21, no. 12, pp. 4233–4248, 2021.

[44] L. Zhao, E. Zhang, S. Wan, A. Hawbani, A. Y. Al-Dubai, G. Min, and A. Y.
Zomaya, “Meson: A mobility-aware dependent task offloading scheme
for urban vehicular edge computing,” IEEE Transactions on Mobile
Computing, vol. 23, no. 5, pp. 4259–4272, 2023.

[45] J. Zhang, H. Guo, J. Liu, and Y. Zhang, “Task offloading in vehicular edge
computing networks: A load-balancing solution,” IEEE Transactions on
Vehicular Technology, vol. 69, no. 2, pp. 2092–2104, 2019.

[46] L. K. Muller, “Overparametrization of hypernetworks at fixed FLOP-count
enables fast neural image enhancement,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 284–293,
2021.

[47] S. Gronauer and K. Diepold, “Multi-agent deep reinforcement learning: a
survey,” Artificial Intelligence Review, pp. 1–49, 2022.

[48] Z. Cheng, M. Min, M. Liwang, L. Huang, and Z. Gao, “Multiagent
DDPG-based joint task partitioning and power control in fog computing
networks,” IEEE Internet of Things Journal, vol. 9, no. 1, pp. 104–116,
2021.

[49] K. Arulkumaran, M. P. Deisenroth, M. Brundage, and A. A. Bharath,
“Deep reinforcement learning: A brief survey,” IEEE Signal Processing
Magazine, vol. 34, no. 6, pp. 26–38, 2017.

[50] M. Claesen and B. De Moor, “Hyperparameter search in machine
learning,” arXiv preprint arXiv:1502.02127, 2015.

[51] L. Chen, R. Jain, and H. Luo, “Learning infinite-horizon average-reward
Markov decision process with constraints,” in International Conference
on Machine Learning, pp. 3246–3270, PMLR, 2022.

[52] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[53] Y. Bai, E. Yang, B. Han, Y. Yang, J. Li, Y. Mao, G. Niu, and T. Liu,
“Understanding and improving early stopping for learning with noisy
labels,” Advances in Neural Information Processing Systems, vol. 34,
pp. 24392–24403, 2021.

[54] R. Lowe, Y. I. Wu, A. Tamar, J. Harb, O. Pieter Abbeel, and I. Mordatch,
“Multi-agent actor-critic for mixed cooperative-competitive environ-
ments,” Advances in neural information processing systems, vol. 30,
2017.

[55] B. Lehle and J. Peinke, “Analyzing a stochastic process driven by ornstein-
uhlenbeck noise,” Physical Review E, vol. 97, no. 1, p. 012113, 2018.

[56] T.-H. Fan and Y. Wang, “Soft actor-critic with integer actions,” in 2022
American Control Conference (ACC), pp. 2611–2616, 2022.

[57] A. Gao, T. Geng, S. X. Ng, and W. Liang, “A continuous policy learning
approach for hybrid offloading in backscatter communication,” IEEE
Communications Letters, vol. 25, no. 2, pp. 523–527, 2021.

[58] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” Advances in neural information
processing systems, vol. 25, 2012.

[59] P. Chaudhari, R. Achar, and S. Singh, “Enhancing lane recognition in
autonomous vehicles using cross-layer refinement network,” IEEE Access,
2024.

[60] M. Kondapally, K. N. Kumar, C. Vishnu, and C. K. Mohan, “Towards a
transitional weather scene recognition approach for autonomous vehicles,”
IEEE Transactions on Intelligent Transportation Systems, 2023.

[61] A. Krizhevsky, G. Hinton, et al., “Learning multiple layers of features
from tiny images,” 2009.

[62] C. Yu, A. Velu, E. Vinitsky, Y. Wang, A. Bayen, and Y. Wu, “Benchmark-
ing multi-agent deep reinforcement learning algorithms,” 2020.

[63] D. K. Dewangan, S. P. Sahu, and K. V. Arya, “Vision-sensor enabled
multi-layer CNN scheme and impact analysis of learning rate parameter
for speed bump detection in autonomous vehicle system,” IEEE Sensors
Letters, 2024.

[64] Y.-J. Ku, S. Baidya, and S. Dey, “Adaptive computation partitioning
and offloading in real-time sustainable vehicular edge computing,” IEEE
Transactions on Vehicular Technology, vol. 70, no. 12, pp. 13221–13237,
2021.

[65] S. S. Sarma, K. Sinha, G. Chakraborty, B. P. Sinha, et al., “Optimal
distribution of traffic in manhattan road networks for minimizing routing-
time,” IEEE Transactions on Intelligent Transportation Systems, vol. 22,
no. 11, pp. 6799–6820, 2020.

[66] Y. Saadi, S. E. Kafhali, A. Haqiq, and B. Nassereddine, “Simulation
analysis of routing protocols using manhattan grid mobility model in
manet,” arXiv preprint arXiv:1304.2035, 2013.

[67] I. Mohamed, “Path-loss estimation for wireless cellular networks using
Okumura/Hata model,” Science Journal of Circuits, Systems and Signal
Processing, vol. 7, no. 1, pp. 20–27, 2018.

[68] M. Canizo, I. Triguero, A. Conde, and E. Onieva, “Multi-head CNN–
RNN for multi-time series anomaly detection: An industrial case study,”
Neurocomputing, vol. 363, pp. 246–260, 2019.

Robert Rauch is a PhD student at the Technical Uni-
versity of Košice (TUKE), where he earned his B.Sc.
and M.Sc. degrees in 2019 and 2021, respectively. As
a visiting researcher at the Czech Technical University
in Prague in 2023, he expanded his expertise in
computer vision, focusing on accelerating tasks for
autonomous vehicles within the realm of vehicular
edge computing. In 2024, he conducted research at the
University of California, Irvine, further enhancing his
experience in computer vision, autonomous vehicles,
split computing, and sensor fusion.

Zdenek Becvar received M.Sc. and Ph.D. in
Telecommunication Engineering from the Czech
Technical University in Prague (CTU), Czech Repub-
lic in 2005 and 2010, respectively. Now, he is the Full
Professor at the same university. From 2006 to 2007
and in 2009, he was with Sitronics R&D centre and
with Vodafone R&D center at CTU, respectively. He
was on internships at Budapest Politechnic, Hungary
(2007), CEA-Leti, France (2013), and EURECOM,
France (2016, 2019, 2023). He is recipient of the best
paper award at European Wireless 2017, bronze medal

at ACM Mobicom App contest 2015, and the Best Editor awards from IEEE
Wireless Comm. Letters in 2024.

Pavel Mach received M.Sc. and Ph.D. in Telecom-
munication Engineering from the Czech Technical
University in Prague, Czech Republic in 2006 and
2010, respectively. He is senior researcher in 5G
mobile lab founded in 2015 at CTU in Prague focusing
on 5G and beyond mobile networks. He has published
3 book chapters, more than 70 conference or journal
papers and he is co-inventor of three U.S. patents.

Juraj Gazda is currently a Vice-Rector for Inno-
vation and Technology Transfer and Professor with
the Faculty of Electrical Engineering at the Technical
University of Košice (TUKE), Slovakia. He has
been a guest researcher at Ramon Llull University,
Barcelona, and the Technical University of Hamburg-
Harburg. He has been involved in development for
Nokia Siemens Networks (NSN). In 2017, he was
recognized as the Best Young Scientist at TUKE.
Currently, he serves as the editor of KSII Transactions
on Internet and Information Systems and as a guest

editor of Wireless Communications and Mobile Computing (Wiley).

