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Abstract—With the advancement of deep learning in Con-
nected Autonomous Vehicles (CAVs), real-time semantic seg-
mentation has emerged as a crucial task. The integration of
semantic segmentation vision transformers into CAV perception
systems capitalizes on the efficiency of the vision transformers
and their capacity to capture a global context. To further optimize
transformer’s performance, we propose the integration of a Split
Computing (SC) into the transformer architecture to enable the
processing of the computation related to transformers to be
distributed between the CAVs and an Edge Computing Server
(ECS). The objective of our work is to evaluate SC efficiency in
minimizing latency of intensive computational tasks of the trans-
formers with minimal loss in semantic segmentation’s accuracy.
Simulations demonstrate that vision transformer architectures
are well-suited for the SC integration and outperform both ECS-
Only and CAV-Only baseline approaches in various scenarios,
offering an acceptable latency-accuracy trade-offs. Specifically,
our findings indicate that SC outperforms baseline methods in
terms of latency by up to 79.36%, incurring a minor accuracy
reduction. This makes them particularly suitable for applications
where real-time processing and minimal latency are critical
considerations.

Index Terms—Connected Autonomous Vehicles, Edge Comput-
ing, Semantic Segmentation, Split Computing, Vision Transform-
ers

I. INTRODUCTION

The rise of Connected Autonomous Vehicles (CAVs) signi-
fies a major advancement in the transportation sector, with the
potential to revolutionize safety, efficiency, and convenience
[1]. The CAVs integrate a diverse range of user-centric appli-
cations focused on safety, comfort, and enhanced functionality
[2]. To deliver these applications with required performance,
real-time processing is paramount. To achieve this, CAVs often
leverage connectivity to nearby Edge Computing Server (ECS)
co-located with base stations [3]. This network architecture al-
lows CAVs to offload computationally intensive tasks, thereby
minimizing execution latency and ensuring timely responses
[3]. Optimizing execution latency through effective offloading
decisions and resource allocation strategies is an active area of
research [4]. These, however, often focus on generic tasks and
do not explore more specific tasks, such as computer vision
tasks, which are gaining significant traction within CAVs [5].
Compared to the more generic tasks, computer vision tasks
frequently utilize Deep Learning (DL) models [6].

The computationally intensive nature of DL models [7]
drives research towards Split Computing (SC). This approach
strategically partitions the model’s workload, with a portion
executing on the CAV and the remainder processed by the ECS
[8]. The study [9] shows that utilizing SC can significantly
improve end-to-end latency, reduce energy consumption on the
CAV, and enhance overall datacenter throughput. Despite the
advantages of SC, the study [9] identifies a crucial challenge,

which is offloading latency. This latency arises from the
high volume of intermediate data generated during DL model
processing. The transfer of this data between the CAV and the
ECS introduces significant delays, potentially compromising
the real-time performance. In response to this challenge,
current research explores compression of the intermediate data
generated at split points within the DL models [10], [11].
One promising approach involves the creation of artificial
bottlenecks [8] using autoencoder architectures [12].

Object detection and semantic segmentation are the two
main computer vision tasks used in CAVs [13]. SC is efficient
in both of these areas [8], but the research on application
of the SC to transformer-based models, a rapidly growing
field in computer vision [14], remains unexplored. Vision
Transformers (ViTs) achieves state-of-the-art performance in
semantic segmentation, surpassing Convolutional Neural Net-
works (CNNs) [15]. This is due to the ViTs ability to cap-
ture long-range dependencies using self-attention mechanisms
[16]. However, ViTs have a high computational complexity,
especially for high-resolution tasks [17]. Architectures like
Swin Transformer address this by reducing complexity through
hierarchical feature maps and shifted windows [18]. The Swin
Transformer’s proficiency in handling image features makes it
suitable for the autonomous driving perception models [19].

Motivated by the potential benefits of SC and the growing
interest in transformer-based models for semantic segmenta-
tion in CAVs, this we aim at an evaluation of an applicability
of SC for the transformer-based models. To the best of our
knowledge, no existing research has investigated integration
of the SC within transformer models. Our proposed approach
strategically inserts split points within the transformer model
to effectively partition the computational workload between
the CAV and the ECS. At each split point, we utilize artificial
bottlenecks to compress the data for offloading to the ECS. Our
objective is to minimize a drop in semantic segmentation’s
accuracy of our tasks (i.e., execution of the transformer-
based DL model) while minimizing the latency of these
tasks. Through comprehensive simulations, we evaluate each
split point and demonstrate that enabling partial computation
offloading via integration of the split points to the transformers
can significantly improve latency with a marginal impact on
the model’s accuracy when compared to compete processing
of the transformers solely by the CAV and by the ECS.

The remainder of the paper is organized as follows. Sec-
tion II defines the system model used for evaluation. Sec-
tion III details our proposed approach, including the inser-
tion of split points and the creation of artificial bottlenecks.
Section IV presents an evaluation of the proposed approach’s
performance. Finally, Section V summarizes the proposed
approach and discusses potential future directions.
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II. SYSTEM MODEL

In this section, we introduce the system model covering
communication, computation, and latency aspects adopted in
this paper.

The system model adopts a discrete-time approach with
time progression denoted by t, where t ∈ {1, 2, . . . , T},
with each time step having a constant duration. We consider
NCAV CAVs, each uniquely identified by an index v, where
v ∈ {1, 2, . . . , NCAV}. As the offloading decision within
edge computing for transformers falls outside the scope of
this study, we posit a single base station equipped with an
ECS within our system model, similarly to [20]. Because
SC focuses solely on how the DL model is executed, by
distributing execution between CAVs and ECS, it seamlessly
integrates with offloading decision-making algorithms (i.e.,
choosing which CAVs are connected to which ECSs).

The computation task generated by CAVs is represented by
the transformer-based DL model for semantic segmentation
with integrated split points. We define N split split points within
the DL model, indexed as s, where s ∈ {1, 2, . . . , N split}.
Similarly to [12], we systematically iterate through these
split points and incorporate an artificial bottleneck using
autoencoder architectures. This artificial bottleneck comprises
channel-reduction and channel-restoration layers. Its purpose
is to compress the intermediate features generated by the split
point by reducing their channel dimension to a predefined
value c, resulting in a lower communication delay for data
transfer between CAV and ECS, which is a key component in
SC [21].

To assess the performance of the SC-enhanced transformer-
based DL model, we adopt semantic segmentation accuracy
[22] as the primary metric. This aligns with related works,
see e.g., [23]. Semantic segmentation aims to categorize each
pixel within an image. Therefore, we initially define accuracy
for the d-th image as:

µimg
s,d(c) =

N true
s,d (c)

N pix , (1)

where N true
s,d (c) denotes the total number of correctly classified

pixels in the d-th image processed by our DL model with inte-
grated artificial bottleneck at the s-th split point with channel-
reduction value of c. Furthermore, N pix represents the total
number of pixels in the image, which remains constant across
all images in the validation dataset. The overall accuracy is
then obtained by averaging the individual image accuracies
across the validation dataset as:

µs(c) =

∑N img

d=1 µ
img
s,d(c)

N img × 100. (2)

where N img represents the total number of images within the
validation dataset.

We calculate the communication data rate λv(t) for trans-
ferring the tasks between the v-th CAV and the ECS at the
time step t using [24] as:

λv(t) = ηv(t)ρv(t)ν(t)

[
NRB

NCAV

]
, (3)

where ηv(t) and ρv(t) are the number of bits per symbol and
the code rate for the v-th CAV, respectively, ν(t) is the current
symbol rate, NRB denotes the number of available resource
blocks within the ECS, and NCAV represents the number of
CAVs associated with the ECS.

The Signal-to-Interference-Plus-Noise Ratio (SINR) at the
time step t is mapped to a modulation and coding scheme to
determine the values for ηv(t) and ρv(t) according to [25].

Using the data rate λv(t), we calculate the offloading latency
of the z-th task as:

tuplink
z =

Ds(c)

λv(t)
+ tuplink

z,w , (4)

where Ds(c) represents the volume of data to be offloaded to
the ECS if the s-th split point is selected and the corresponding
artificial bottleneck with channel size c. Additionally, tuplink

z,w

denotes the time z-th task spent in queues awaiting the start
of offloading process. We assume a system model, where the
segmentation results of the CAV-generated tasks remain on
the ECS for purposes related to aggregated data from multiple
CAVs (e.g., traffic analysis) [26]. As a consequence, the size
of the output data is notably smaller in comparison to the
offloaded data, and therefore, similarly to other related works
(see e.g., [27]), we can neglect downlink latency.

During the process of splitting a transformer-based DL
model, the inherent consequence is the division of the compu-
tational demand associated with the z-th task, denoted by fz
and measured in Tera Floating Point Operations (TFLOPs),
into two distinct components: the computational demand on
the v-th CAV (i.e., CAV, that generated the z-th task) and the
demand on the ECS. This relationship can be mathematically
expressed as:

fz = fCAV
z + fECS

z .

To compute the processing latency for the v-th CAV tCAV
z,v ,

and the processing latency for the ECS tECS
z for the z-th task,

we employ the following formulas:

tCAV
z,v =

fCAV
z

FCAV
v (t)

+ tCAV
z,v,w, (5)

tECS
z =

fECS
z

F ECS(t)
+ tECS

z,w , (6)

where FCAV
v (t) corresponds to the computational power in

Tera Floating Point Operations per Second (TFLOPS) of the v-
th CAV and tCAV

z,v,w denotes the time spent waiting in the queues
before the processing of the z-th task on the v-th CAV begins.
The computational power of ECS is denoted by F ECS(t), and
tECS
z,w corresponds to the time the z-th task spends waiting on

ECS before being processed.
The total latency ttotal

z required to complete the z-th task, in-
cluding communication latency tuplink

z , CAV processing latency
tCAV
z,v , and BS processing latency tECS

z , is calculated as:

ttotal
z = tuplink

z + tCAV
z,v + tECS

z . (7)
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III. PROPOSED APPROACH

This paper investigates the effectiveness of SC in
transformer-based DL models for semantic segmentation. In
this section, we propose a method for inserting splits, inte-
grating artificial bottlenecks for compression, and determining
optimal channel-reduction c for latency-accuracy trade-off. We
further address limitation of SC in transformers and propose
mitigation strategy.

The transformer-based DL models for semantic
segmentation are typically divided into distinct logically
connected blocks, commonly referred to as stages [18],
[28], [29]. To maintain each stages integrity, we avoid
splitting within stages and insert split points between
consecutive stages. We then add artificial bottlenecks at
these points, configuring them with a channel-reduction
value (c). This value is crucial as it impacts latency
and accuracy. Our proposed Algorithm 1 integrates these
bottlenecks and determines optimal channel-reduction values
(C∗)usingascoringmethodologythatbalancesaccuracyandlatency.Thealgorithmiscomposedasfollows.

Algorithm 1 Configuration of Artificial Bottlenecks using
Scoring Methodology

1: Input: Trained SC-enhanced transformer-based DL
model, number of splits N split

2: C∗ ← {}
3: for each split s ∈ {1, . . . , N split} do
4: α∗s(c)← −∞
5: for each c ∈ Cs do
6: Insert an artificial bottleneck to the s-th split point

of DL model
7: Train inserted artificial bottleneck according to

[12]
8: compute accuracy µs(c) according to (2)
9: compute data size Ds(c) for offloading

10: µ′s(c)←
µs(c)−µmin

s

µmax
s −µmin

s

11: D′s(c)←
Ds(c)−Dmin

s

Dmax
s −Dmin

s

12: αs(c)← wdata(1−D′s(c)) + waccµ′s(c)
13: if αs(c) > α∗s(c) then
14: α∗s(c) ← αs(c)
15: c∗ ← c
16: end if
17: end for
18: C∗ ← C∗ ∪ {c∗}
19: end for
20: Output: Set of optimal channel-reduction values C∗

At input, we expect a trained SC-enhanced transformer-
based DL model for semantic segmentation with N split split
points (line 1). First, we initialize an empty set of optimal
channel-reduction val’ues C∗ (line 2). Then, we iterate over
each split point indexed with s (line 3). We initialize the s-
th split’s best score (score representing the accuracy-latency
trade-off) α∗s(c) to −∞ (line 4). This ensures that any initial
score encountered during the search will be considered better
and replace negative infinity. Next, we insert an artificial
bottleneck at the s-th split point in the DL model and train it
using the channel-reduction value c ∈ Cs, where Cs includes all

Fig. 1: Scheme of SC-enhanced transformer-based DL model
for semantic segmentation with integrated artificial bottleneck
at s-th split point

possible channel-reduction values for the artificial bottleneck
at the s-th split point. These values range from 1 to the number
of channels in the intermediate features entering the artificial
bottleneck, excluding the upper bound (lines 6 and 7). Next,
we calculate the accuracy µs(c) of the DL model with the
inserted artificial bottleneck (line 8). We then compute the
amount of data Ds(c) to be offloaded from the CAV to the
ECS (line 9), which changes based on current split index s
and the channel-reduction value c. The data size Ds(c) for
offloading is equal to the size of the output matrix from
the channel-reduction layers of the corresponding artificial
bottleneck. Next, we normalize the accuracy µs(c) and data
size for offloading Ds(c) using min-max normalization [30]
with minimal and maximal possible values for accuracy in
range [µmin

s , µmax
s ] and for data size for offloading in range

[Dmin
s , Dmax

s ]. In this context, Dmin
s represents the size of the

output from the artificial bottleneck’s channel-reduction layers
when c = 1, and Dmax

s corresponds to the size of the output
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from the artificial bottleneck’s channel-reduction layers when
c is set to the highest possible channel-reduction value for this
artificial bottleneck, integrated within the s-th split point (lines
10 and 11). The variables µ′s(c) and D′s(c) denotes the normal-
ized accuracy and the normalized data size for offloading for
the s-th split point, respectively. The score αs(c) is calculated
based on a weighted sum of normalized accuracy µ′s(c) and
normalized data size for offloading D′s(c) (line 12). Note,
that we subtract 1 from normalized data size D′s(c) to ensure
a lower data size contributes to a higher overall score. The
weights wacc and wdata, which range from 0 to 1, determine the
priority assigned to normalized accuracy µ′s(c) and normalized
data size for offloading D′s(c), respectively. A higher weight
value results in a higher priority for the corresponding criteria.
If the computed score αs(c) is greater than the current best
score α∗s(c), we update best score α∗s(c) to the value of the
current score αs(c) and assign the corresponding channel-
reduction value c to the optimal channel-reduction value c∗

(lines 13-16). Then, we add the optimal channel-reduction
value c∗ for the s-th split point’s artificial bottleneck to the
set C∗ (line 18). Finally, the algorithm outputs the set of the
best channel-reduction values C∗ (line 20).

The stages leading up to s-th split point, along with the
artificial bottleneck channel-reduction layers, are computed
on the CAV. The stages following the s-th split point, along
with the artificial bottleneck channel-restoration layers, are
computed on the ECS. These computational dependencies are
illustrated in Fig.1.

Semantic segmentation DL models often employ an
encoder-decoder architecture, including lateral connections
between corresponding encoder and decoder stages. These
connections are utilized to transfer information for the upsam-
pling process, such as pooling indices [31] or skip connections
for intermediate feature maps [18], [28], [29]. However, [32]
demonstrates that skip connections provide a marginal benefit.
Moreover, this approach presents challenges for semantic
segmentation SC-enhanced DL models, as transferring large
amounts of data between CAVs and ECS is often impractical.
Therefore, for purposes of SC, we propose using a hybrid ar-
chitecture featuring a transformer encoder and a CNN decoder
[33] with no such additional information transferred, similar
to [34].

After the implementation of the proposed changes to the
transformer-based DL model, we have architecture featuring
integrated splits between DL model stages. Each split incorpo-
rates an artificial bottleneck, with the channel-reduction value
c strategically chosen based on a latency-accuracy trade-off
analysis as outlined in Algorithm 1. This enables a systematic
evaluation of the effectiveness of each split point by measuring
the corresponding latency and accuracy metrics.

IV. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the proposed
approach. We start by describing the experimental setup, which
includes both the training and simulation configurations. Next,
we assess the process of configuring the artificial bottlenecks.
Finally, we evaluate the effectiveness of the proposed approach
through simulation across various environmental conditions.

A. Simulation Setup

Our SC-enhanced transformer-based DL model is trained
using the CamVid dataset [35], [36], which serves as a
benchmark for semantic segmentation [15], [37]. As encoder,
we employ the smallest Swin transformer variant (Swin-T)
for its computational efficiency. We pair Swin encoder with
a progressive upsampling convolutional decoder, similar to
[34]. The convolutional decoder architecture employed is the
decoder component of SegNet [31], with modifications to
the upsampling process as detailed in Section III. The first
four splits are located after transformer encoder stages, while
the rest of the splits are located between the stages of the
convolutional decoder. For training of artificial bottlenecks,
we use batch size of 8, AdamW optimizer with learning rate
of 0.001 and PolynomialLR scheduler with the power of 0.9.
These hyperparameters are chosen using grid search, as in
[38].

The primary simulation parameters are listed in Table I. The
computational power of the ECS is set to 41.29 TFLOPS,
simulating a high-capacity ECS capable of handling higher
volume of tasks. The symbol rate ν(t) is fixed at 0.168. Each
second, 10 tasks are generated. We evaluate the proposed
approach by adjusting the computational power of CAVs
FCAV
v (t), using values 1.1, 4.1 and 7.1 TFLOPS, reflecting

varying CAVs computational capabilities. Similarly, we inves-
tigate the impact of number of resource blocks NRB, using
values 1000, 2000, and 4000, allowing for the analysis of per-
formance under different network capacities. The simulation
area emulates an urban environment, with CAVs following the
Manhattan mobility model [39]. The results are averaged over
10 simulations, each with 5000 steps.

TABLE I: Edge Simulation Configuration

Parameter Value
Number of Simulations 10
Number of steps per Simulation (T ) 5000
Number of CAVs (NCAV) 10
Computational Power of ECS (fECS

z ) 41.29
Symbol Rate (ν(t)) 0.168
Number of Tasks Generated per Second 10
Number resource blocks (NRB) [1000, 2000, 4000]
Computational power of CAVs (FCAV

v (t)) [1.1, 4.1, 7.1]

We evaluate the proposed approach against two baseline
approaches that do not integrate splits into the DL model:

1) CAV-Only Approach: The entire DL model is com-
puted solely on the CAV without any offloading.

2) ECS-Only Approach: The entire DL model is com-
puted solely on the ECS after transferring all data from
a CAV to the ECS.

B. Artificial Bottleneck Configuration

We present the results of configuring artificial bottlenecks
for each split point within our SC-enhanced transformer-based
DL model. This DL model represents the tasks for which
the CAVs require computation results. To achieve this, we
leverage Algorithm 1 to identify the optimal channel-reduction
values C∗. The weights assigned to both accuracy wacc and
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(a) Validation and training accuracy µs(c)
curves computed during artificial bottleneck
training in the second split point with c = 4

(b) Score αs(c) and accuracy µs(c) with
respect to channel-reduction values c ∈ Cs

for the second split point
(c) Accuracy µs(c) of each split point and
baselines

Fig. 2: Score αs(c) and accuracy µs(c) analysis for the configuration of artificial bottlenecks

transferred data size wdata are set equally to 1. Fig. 2 illustrates
the obtained results.

Fig. 2a depicts the training process for an artificial bottle-
neck implemented within the second split point, employing
a channel-reduction value of c = 4. To conserve space, only
this specific training process is presented, however, all other
artificial bottlenecks exhibit similar training patterns. Each
bottleneck undergoes training for 50 epochs, as demonstrated
in Fig. 2a, which establishes a well-balanced trade-off between
training time and attained accuracy µs(c). Following the train-
ing of each artificial bottleneck, the score αs(c) is calculated.
This score αs(c) is a function of both the achieved accuracy
µs(c) and the potential data size Ds(c) that CAVs would need
to offload to the ECS.

The achieved score αs(c) and accuracy µs(c) for each
channel-reduction value c ∈ Cs within the second split point
are presented in Fig. 2b. The data size Ds(c) is excluded from
the figure due to its straightforward positive linear correlation
with the channel-reduction values c ∈ Cs. Furthermore, to
maintain conciseness, only the initial 25 channel-reduction
values c ∈ Cs are displayed, with the remaining values in
Cs exhibiting the same decreasing trend for score αs(c).

Finally, Fig. 2c shows the accuracy, µs(c) (where c ∈ C∗ for
all split points), for the proposed approach and the baselines.
As observed in Fig. 2c, both the ECS-Only and CAV-Only
baslines achieve an accuracy µs(c) of 83.98%, as both do
not utilize lossy compression through artificial bottlenecks.
Nonetheless, each split point exhibits small drop in accuracy
µs(c), with the first split point achieving the lowest accuracy
µs(c) of 77.52%.

C. Modeling Latency of Proposed Network via Edge Simula-
tion Environment

To evaluate the effectiveness of different split points, we
conducted a series of simulations across a range of system
parameters. We assessed the average execution latency ttotal

z of
tasks under different splitting configurations. Additionally, we
benchmarked the performance against CAV-Only and ECS-
Only baselines. The results of these simulations are presented
in Fig. 3.

As depicted in Fig. 3a, SC demonstrates its greatest ad-
vantage in resource-constrained environments. The first split
point achieves a significant latency ttotal

z reduction compared
to both baselines, exhibiting 58.81% improvement against
the ECS-Only baseline and 79.36% against the CAV-Only
baseline. However, due to the inherently high latency of
CAV computations tCAV

z,v , only the first four splits outperform
ECS-Only baseline. As the number of resource blocks NRB

increases (refer to Figs. 3b and 3c), the ECS-Only baseline
becomes increasingly competitive. Consequently, fewer split
points remain viable options for achieving lower latencies ttotal

z

compared to ECS-Only baseline. However, even in scenarios
where the ECS-Only baseline achieves comparable latency
ttotal
z to the first split point (as observed in Fig. 3c), SC might

still be preferable due to its potential privacy benefits, as
elaborated in [40].

An increase in the computational capabilities of CAVs
FCAV
v (t) reveals two key trends. First, the CAV-Only baseline

becomes increasingly viable, achieving latency values ttotal
z

comparable to SC. Second, a larger number of split points
outperform the baselines. Across all split points depicted in
Figs. 3d, 3e, and 3f, SC exhibits latency ttotal

z that is either
lower or comparable to the baselines. Specifically, we observe
improvements in latency ttotal

z of up to 66.81% against the
ECS-Only baseline and up to 41.58% against the CAV-Only
baseline. Finally, as evident in Figs. 3g, 3h, and 3i, with a
further increase in CAVs computational power FCAV

v (t), the
CAV-Only baseline closes the performance gap even surpass-
ing certain split points.

V. CONCLUSION

In this work, we have investigated the integration of SC
into a transformer-based DL model for semantic segmentation.
We have proposed an algorithm to identify optimal channel-
reduction values for artificial bottlenecks, enabling data com-
pression for offloading. This algorithm leverages a scoring
function that incorporates a weighted sum of accuracy and
data size. Our results showcase the effectiveness of configuring
these artificial bottlenecks within a Swin Transformer-based
DL model. Specifically, we employ a hybrid transformer-CNN
DL model, where the Swin Transformer serves as the encoder
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(a) F CAV
v (t) = 1.1 and NRB = 1000 (b) F CAV

v (t) = 1.1 and NRB = 2000 (c) F CAV
v (t) = 1.1 and NRB = 4000

(d) F CAV
v (t) = 4.1 and NRB = 1000 (e) F CAV

v (t) = 4.1 and NRB = 2000 (f) F CAV
v (t) = 4.1 and NRB = 4000

(g) F CAV
v (t) = 7.1 and NRB = 1000 (h) F CAV

v (t) = 7.1 and NRB = 2000 (i) F CAV
v (t) = 7.1 and NRB = 4000

Fig. 3: Results of edge simulation with variable number of resource blocks NRB and CAV computational power FCAV
v (t) in

TFLOPS.

and the CNN acts as the decoder. Furthermore, we conduct
a comprehensive evaluation of the most effective artificial
bottleneck configurations within a simulated environment by
varying key system parameters to assess their performance.
The proposed approach demonstrates superior performance
compared to the established ECS-Only and CAV-Only base-
lines across diverse scenarios. This translates to achieving a
lower or comparable latency while maintaining only very small
accuracy loss. These findings convincingly demonstrate the
suitability of leveraging SC for transformer-based architectures
and their potential in real-time applications and latency-critical
domains.
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“SegFormer: Simple and efficient design for semantic segmentation with

transformers,” CoRR, vol. abs/2105.15203, 2021. [Online]. Available:
https://arxiv.org/abs/2105.15203

[29] Z. Geng, L. Liang, T. Ding, and I. Zharkov, “RSTT: Real-time spatial
temporal transformer for space-time video super-resolution,” 03 2022.

[30] S. G. K. Patro and K. K. Sahu, “Normalization: A preprocessing
stage,” CoRR, vol. abs/1503.06462, 2015. [Online]. Available: http:
//arxiv.org/abs/1503.06462

[31] V. Badrinarayanan, A. Kendall, and R. Cipolla, “SegNet: A deep
convolutional encoder-decoder architecture for image segmentation,”
2016.

[32] A. Kamath, J. Willmann, N. Andratschke, and M. Reyes, “Do we
really need that skip-connection? understanding its interplay with task
complexity,” in Medical Image Computing and Computer Assisted In-
tervention – MICCAI 2023, H. Greenspan, A. Madabhushi, P. Mousavi,
S. Salcudean, J. Duncan, T. Syeda-Mahmood, and R. Taylor, Eds.
Cham: Springer Nature Switzerland, 2023, pp. 302–311.

[33] A. Khan, Z. Rauf, A. Sohail, A. R. Khan, H. Asif, A. Asif,
and U. Farooq, “A survey of the vision transformers and their
CNN-transformer based variants,” Artificial Intelligence Review,
vol. 56, no. S3, p. 29172970, Oct. 2023. [Online]. Available:
http://dx.doi.org/10.1007/s10462-023-10595-0

[34] S. Zheng, J. Lu, H. Zhao, X. Zhu, Z. Luo, Y. Wang, Y. Fu,
J. Feng, T. Xiang, P. H. S. Torr, and L. Zhang, “Rethinking
semantic segmentation from a sequence-to-sequence perspective with
transformers,” CoRR, vol. abs/2012.15840, 2020. [Online]. Available:
https://arxiv.org/abs/2012.15840

[35] G. J. Brostow, J. Shotton, J. Fauqueur, and R. Cipolla, “Segmentation
and recognition using structure from motion point clouds,” in ECCV (1),
2008, pp. 44–57.

[36] G. J. Brostow, J. Fauqueur, and R. Cipolla, “Semantic object classes
in video: A high-definition ground truth database,” Pattern Recognition
Letters, vol. 30, no. 2, pp. 88–97, 2009.

[37] J. Xu, Z. Xiong, and S. P. Bhattacharyya, “PIDNet: A real-time
semantic segmentation network inspired by PID controllers,” 2023.
[Online]. Available: https://arxiv.org/abs/2206.02066

[38] J. Hanna, M. Mommert, and D. Borth, “Sparse multimodal vision trans-
former for weakly supervised semantic segmentation,” in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR) Workshops, June 2023, pp. 2145–2154.

[39] A. Hanggoro and R. F. Sari, “Performance evaluation of the manhattan
mobility model in vehicular ad-hoc networks for high mobility vehicle,”
in 2013 IEEE International Conference on Communication, Networks
and Satellite (COMNETSAT). IEEE, 2013, pp. 31–36.

[40] T. Nishio, K. Yorita, S. Ohta, K. Maejima, K. Kodera, Y. Horikawa, and
K. Fukui, “Split computing-based privacy-preserving image classifica-
tion and object detection,” in 2024 IEEE 21st Consumer Communica-
tions & Networking Conference (CCNC). IEEE, 2024, pp. 1092–1093.

7

https://doi.org/10.1145/3093337.3037698
https://doi.org/10.1145/3093337.3037698
http://arxiv.org/abs/1602.06541
http://arxiv.org/abs/1602.06541
https://www.etsi.org/deliver/etsi_ts/138200_138299/138211/16.02.00_60/ts_138211v160200p.pdf
https://www.etsi.org/deliver/etsi_ts/138200_138299/138211/16.02.00_60/ts_138211v160200p.pdf
https://api.semanticscholar.org/CorpusID:235743022
https://arxiv.org/abs/2105.15203
http://arxiv.org/abs/1503.06462
http://arxiv.org/abs/1503.06462
http://dx.doi.org/10.1007/s10462-023-10595-0
https://arxiv.org/abs/2012.15840
https://arxiv.org/abs/2206.02066

	Introduction
	System model
	Proposed Approach
	Performance Evaluation
	Simulation Setup
	Artificial Bottleneck Configuration
	Modeling Latency of Proposed Network via Edge Simulation Environment

	Conclusion
	References

