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Abstract—In this paper, we introduce a novel framework
jointly managing handovers of user equipments (UEs) and
Unmanned Aerial Vehicles (UAVs) serving the UEs. The goal
is to maximize the sum capacity of the UEs while considering a
cost related to the handovers. To this end, we introduce a novel
approach based on deep deterministic policy gradient (DDPG)
adjusting the Cell Individual Offset (CIO) for handovers of the
UEs among the UAVs and ground base stations (GBSs) as well as
handovers of the UAVs among the GBSs. The UAVs playing the
role of relays often face challenges related to the implementation
cost and energy limitations. To address these challenges, the
UAVs should operate in a transparent relaying mode. In such
mode, unfortunately, the channels between the UEs and the UAVs
are unknown as the transparent relays lack any communication
control-related functionalities. Therefore, we adopt a deep neural
network (DNN) to predict the channel qualities among the UEs
and the UAVs for the handover purposes. We demonstrate that
the proposal significantly increases the sum capacity of the
UEs by dozens of percent and even reduces the number of
handovers compared to state-of-the-art works. At the same time,
the proposed DDPG-based CIO setting reduces a gap in the sum
capacity between the predicted and the optimal (but practically
not feasible) case with perfectly known channels among UEs and
UAVs. Hence, the proposal is suitable for practical scenarios with
not perfectly accurate channel quality information.

Index Terms—Handover, machine learning, transparent relays,
unmanned aerial vehicles, users, cell individual offset.

I. INTRODUCTION

Unmanned aerial vehicles (UAVs) equipped with wireless
communication hardware acting as flying base or relay sta-
tions, are considered to be a promising solution for future
mobile networks due to a high adaptability and flexibility. The
UAVs have a potential to extend the network coverage and
enhance quality of service (QoS) in highly loaded areas [1].
However, integration of the UAVs into the mobile networks
introduces challenges, such as optimizing the placement of
the UAVs, the trajectory and power allocation of the UAVs,
or handovers of user equipments (UEs) among the UAVs and
ground base stations (GBSs) as well as handovers of the UAVs
among the GBSs [2]. In this paper, we focus on the problem
of handovers of both the UEs and the UAVs.

In traditional mobile networks, the handover of UEs among
GBSs is typically triggered when a target GBS offers the
channel with a superior quality compared to the channel from a
serving GBS [3]. To mitigate frequent handovers, the decision
to initiate the handover is fine-tuned using control parameters
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like hysteresis, time-to-trigger (TTT), or cell individual offset
(CIO) [4]. The works targeting only GBSs, however, neglect
aspects of dynamicity related to the UAVs’ movement. The
UAVs change their positions over time following an arbitrary
movement of the served UEs [5]. Simultaneous movement
of both UAVs and UEs may introduce rapid changes in the
quality of all channels resulting in frequent and unpredictable
handovers of the UEs among the UAVs and the GBSs as well
as handovers of the UAVs among the GBSs [6]. Such frequent
and unpredictable handovers can lead to handover failures,
packet losses, and overloading of certain GBSs [7].

There are few studies targeting the optimization of the
handover of the UAVs acting as the UEs, i.e., the UAVs
are not serving any other UEs. In these works, the authors
minimize the number of handovers via a dynamic adjust-
ment of GBSs’ antenna tilt [3], by alternation of the UAV
handover parameters [8], or by reinforcement learning [9].
Despite promising results, [3], [8], [9] assume scenarios with
predefined and a priory known UAV trajectories. However,
this assumption does not hold in the scenarios with the UAV
serving the UEs, where the UAV trajectories are unknown and
depend on the movement of UEs. The same limitation applies
also for traditional mobile relays deployed on trains or public
transportation vehicles, as addressed, e.g., in [10]. Besides, the
traditional mobile relays are (almost) static from the respective
of the served UEs. Such assumptions do not hold for the UAVs
serving the UEs.

Generally, the UAVs relay user data between the GBS and
the UEs in a non-transparent mode. In such mode, the UAV re-
lays carry out all the communication control and management
functions, similar to the traditional GBSs. However, such com-
prehensive management leads to a high complexity, weight,
and energy consumption [11], making the non-transparent
relaying impractical for the energy-constrained UAV relays.
Therefore, the UAV relays should operate in a transparent
mode making the relays less complex, resulting in lighter,
more cost-effective, and energy-efficient solution compared
to the non-transparent relays [2]. In case of the transparent
UAV relays, the GBS retains control of the communication
management. Unfortunately, this also means that the channel
quality between the UE and the UAV is unknown, since
the transparent relays do not transmit their own reference
signals and only forward the data symbols [12]. This is a
serious obstacle in a deployment of the transparent relays in
practice [13]. Still, the quality of the access channel between



the UE and the UAV can be predicted from the quality of
channels from the UE and the UAV to few surrounding GBSs
using a deep neural networks (DNN) [14], making the use of
transparent relay UAVs feasible [15].

In this paper, we adopt a scenario with predicted access
channel quality between the UEs and the UAVs and we focus
on the optimization of the CIO for the handover decision of
all moving devices, i.e., UEs and UAVs. The key challenge
is to develop a solution that is resistant to the access channel
quality prediction error. Traditional Q-learning or actor-critic-
based deep reinforcement learning (DRL), as adopted in [5],
[9], does not cope well with the channel prediction errors.
The lack of an experience replay buffer and an effective
loss function do not allow the conventional DRL ability to
learn from past experiences, making it inefficient for handover
management with potentially inaccurate channel quality. To
overcome this limitation, we propose a novel method based on
deep deterministic policy gradient (DDPG) that intelligently
predicts the CIO while minimizing the impact of prediction
errors in channel quality. The DDPG is adopted due to: i)
the dynamic and unpredictable behavior of the UEs and,
consequently, also of the UAVs serving these UEs, and ii) an
indirect and unknown relation between the current decisions
(setting of CIO) and their future effects on the network.

The main contributions of this paper are summarized as
follows:

• We introduce a novel framework optimizing CIO of GBSs
and UAVs to increase the sum capacity of the UEs
while minimizing the number of handovers. We adopt
deep reinforcement learning based on DDPG to predict
the optimized CIO settings. The DDPG incorporates a
replay buffer mechanism storing experiences for efficient
learning and enhances efficiency by allowing the system
to learn from the past experience making it suitable
for practical scenario with potentially inaccurate channel
quality information.

• We show that the proposed DDPG-based CIO setting
outperforms traditional DRL-based handover decision
and, in addition, the proposal is also resilient to the po-
tential channel quality errors, since the DDPG adaptively
adjusts its policy learning based on a feedback from the
environment, allowing it to adapt and optimize the actions
despite uncertainties in the channel quality prediction.

The rest of this paper is organized as follows. Section II
introduces the system model. Then, in Section III, the targeted
problem is formulated. Section IV elaborates on our proposed
solution based on DDPG to determine the CIOs of the GBS
and UAVs. Simulation results and discussions are presented in
Section V. Finally, Section VI concludes this paper.

II. SYSTEM MODEL

In this section, we first provide details of the network,
communication, and handover models adopted in this paper.
Then, we describe the DNN employed to predict the channel
qualities from the transparent UAVs to the UEs.

Fig. 1. System model with UEs handovering among all BSs and UAVs serving
the UEs and performing handovers among GBSs.

A. Network model

We consider N UEs deployed in an area covered by G
traditional GBSs and by F UAVs acting as the energy-efficient
flying transparent relays (see Fig. 1). The coverage in the
area is provided in total by K = G + F base stations (BSs),
encompassing GBSs and UAVs.

The position of the n-th UE is arbitrarily changed over time
and the UAVs move in accordance with the movement of the
connected UEs. Note that a mobility models of the UEs and
the UAVs have no impact on the solution proposed in this
paper. Hence, we do not specify these models in this section.

B. Communication model

We consider downlink communication, where signals from
the GBSs reach the UEs either directly from the GBSs or via
the UAVs. The Signal-to-Interference-plus-Noise Ratio (SINR)
γi,j experienced by the j-th receiver directly served by the i-th
transmitter, is defined as:

γi,j =
pihi,j

σ2 +
∑

∀i′∈K/i pi′hi′,j
(1)

where pi is the transmission power of the i-th transmitter, hi,j

is the channel quality between the i-th transmitter and the j-th
receiver, σ2 is spectral noise density,

∑
∀i′∈K/i pi′hi′,j is the

interference from other transmitters, using the same band, pi′
is the transmission power of the i′-th transmitter, and hi′,j is
the quality of the channel from the i′-th transmitter to the j-th
receiver. The transmitter is represented either by the g-th GBS
or by the f -th UAV (i.e., i ∈ {g, f}) and the receiver is either
the f -th UAV or the n-th UE (i.e., j ∈ {f, n}).

The communication capacity for the n-th UE directly served
by the g-th GBS is defined as:

cg,n = Bn log2(1 + γg,n) (2)

where Bn is the bandwidth requested by the n-th UE to meet
creq and is defined as Bn =

creq

log2(1+γg,n)
. The bandwidth

allocation is independent of the handover decision. Therefore,
we assume that bandwidth is assigned to the UEs to fulfill the
minimum required capacity creq considering the UEs’ SINR.
The bandwidth is assigned in descending order, prioritizing
the UEs with the highest SINR first, since these UEs require
the lowest bandwidth. This process is iterated for subsequent
UEs until the available bandwidth is sufficient to meet the
requirements of additional UEs [5].



The communication capacity in the case of relaying from
the g-th GBS via the f -th UAV to the n-th UE with each hop
assigned with a half of the resources, as in [16], is defined as:

cg,f,n =
1

2
Bn min {log2(1 + γg,f ), log2(1 + γf,n)} (3)

Then, in general, the communication capacity of the n-th UE
communicating with the GBS directly or via the UAV is:

cn =

{
cg,n, if the UE is directly served by GBS
cg,f,n, if the UE is served via UAV

(4)

The k-th BS serves a group of receivers imposing the total
load ρUE

k . The load is characterized as ratio of bandwidth Bn

allocated to n-th UE served by k-th BS to the total bandwidth
B. Then, the total load of k-th BS is the sum of loads imposed
by all UEs (ρUE

k ) and UAVs (ρUAV
k ) and is calculated as:

ρk = ρUE
k + ρUAV

k =

∑
∀n∈N

βUE
k,nBn

B
+

∑
∀f∈F βUAV

g,f Bn

B
(5)

where βUE
k,n ∈ {0, 1} indicates if the n-th UE is attached to

the k-th BS (βUE
k,n = 1) or not (βUE

k,n = 0) and βUAV
g,f ∈ {0, 1}

indicates if the f -th UAV is attached to the g-th GBS (βUAV
g,f =

1) or not (βUAV
g,f = 0).

C. Handover decision

The handover of the UEs between the serving BS and the
target BS is initiated based on the commonly adopted A3 event
defined by 3GPP [17]. Therefore, the UEs perform handover
from the serving BS to the target BS when the following
inequality holds true for a period of Time-To-Trigger (TTT):

ptht,n + CIOt −∆ > pshs,n + CIOs (6)

where the indexes s and t indicate the serving and target BSs,
respectively, CIOs/t is the CIO of the serving/target BS, and
∆ is the handover hysteresis.

The UAVs also perform handovers among the GBSs. Sim-
ilar to operation of common UEs in mobile networks, UAV
measures the channel quality from neighboring GBSs. The
channel quality measurement report is transmitted to serving
GBS periodically in the same way as common UEs report
their channel quality. Based on the measurement results, UAV
initiates handover to a neighboring GBS if the condition
specified in (6) is met for a period of TTT.

D. Prediction of channel qualities between UAVs and UEs

In this paper, we assume the UAVs as transparent relays,
presenting a challenge due to their inability to directly acquire
the channel quality between UEs and UAVs for handover
purposes [11], [13]. To address the issue of unknown channel
quality, we adopt DNN to predict the channel quality between
UEs and UAVs solely from information available in the
network, as suggested in [15]. The DNN-based UAV to UEs
channel quality prediction leverages the known quality of
channels between UEs and serving and few neighboring GBSs
and between UAV and few neighboring GBSs. By utilizing the
known channel quality from UEs and UAV to the serving and

neighboring GBSs, DNN predicts the quality of direct channel
between UE and UAV [15].

The architecture of DNN predicting the UAV to UEs chan-
nel quality consists of an input layer, H hidden layers, and an
output layer. Initially, the channel qualities of UEs and UAVs
to the serving and few neighboring GBSs are inserted into the
DNN’s input layer. Subsequently, the input channel qualities
undergo processing through H hidden layers that are fully
connected and are followed by a sigmoid activation function.
The output layer is activated with function allowing to predict
continuous access channel quality between UAV and UE.

III. PROBLEM FORMULATION

In this paper, we optimize the handover of the UEs among
the UAVs and GBSs jointly with the handover of the UAVs
among GBSs. The primary goal is to adjust the CIOs of all
BSs CIO∗ = CIO1, ...,CIOK to maximize the sum capacity
of the UEs. Setting a low CIO for an overloaded BS while
assigning a higher CIO to neighboring BSs enables to re-
distribute the UEs from the overloaded BS to adjacent BSs,
see (6). Thus, incorporating CIO into the handover decision
allows to improve the communication capacity of the UEs by
steering handovers towards underutilized BSs that can provide
more radio resources. Solely optimizing the sum capacity may
result in an excessive number of handovers leading to an
increased signaling overhead and energy consumption, which
is undesirable for the UAVs. Therefore, we also consider a
cost of performed handovers µ represented in practice, e.g., by
signaling, handover interruption, or extra energy consumption
[5]. Then, we define the targeted problem as:

CIO∗ = argmax
CIO∈O

∑
n∈N

cn − µ

a) cn > creq,∀n

b)
∑K

k=1
βUE
k,n = 1,∀n

c)
∑G

g=1
βUAV
g,f = 1,∀f

(7)

where O = ⟨CIOmin, CIOmax⟩. The constraint (7a) ensures
that each UE receives the minimum required capacity, the
constraint (7b) ensures that each UE is associated with just
one BS (either GBS or UAV), and the constraint (7c) limits
each UAV to be associated to just one GBS.

The major challenge in solving the problem outlined in (7)
is a high randomness driven by arbitrary and hard-to-predict
mobility patterns of both the UEs and the UAVs. Addressing
this challenge typically necessitates the application of non-
linear optimization techniques. However, such techniques rely
on having a precise knowledge of the network state, including
the locations of the UEs and the UAVs, which may not
always be available and accurate. Furthermore, even having
perfect information of all relevant parameters, solving this
optimization problem is NP-hard due to its formulation as a
non-convex function. In addition, any future impact of the
current decision (CIO setting) is unpredictable due to the
unknown future movement of UEs and UAVs. Hence, we adopt



deep reinforcement learning based on DDPG to adjust the CIO
for the handover of UEs among all BSs and the CIO for the
handover of UAVs among GBSs, described in the next section.

IV. PROPOSED CIO ADJUSTMENT USING DDPG

In this section, we first provide a brief overview of the
background in deep reinforcement learning relevant to our
specific problem. After that, we present details of the proposed
DDPG-based approach for the CIO adjustment in the networks
with transparent UAVs.

A. Converting CIO adjustment problem to MDP framework

To apply the actor-critic-based DDPG algorithm for the
dynamic CIO setting in the frame of the handover, we interpret
the optimization problem as the MDP. The MDP is defined by
a 4-tuple (S,A, P,R), where S and A represent finite sets of
states and actions, respectively, P denotes the probability of
transition from the state s to the state s′ based on the taken
action a, and R presents the immediate reward obtained by
taking the action a. Individual components of the MDP in
relation to our problem are elaborated as follows.

State: The state comprises load of BSs performing han-
dover. The implied load is proportional to required resources
to meet creq for UEs/UAVs performing the handover. The state
space S(t) at time t is defined as S(t) = [ρ1(t), . . . , ρk(t)].

Action: The action A(t) is defined as a selection of the CIO
for all K BS at the time t, i.e., the action space is defined as
A(t) = [CIO1(t), . . . , CIOK(t)].

Reward: The reward function reflects targeted problem
formulated in (7), i.e., to maximize sum capacity of UEs
served by BS while avoiding handovers failures taking into
account the penalty associated to the cost of handovers µ.
Hence, the reward function is defined as r(t) =

∑
n∈N cn−µ.

B. Proposed DDPG-based CIO adjustment

The proposed concept of DDPG for CIO setting in the
environment with DNN-based prediction of channel quality
between the UEs and transparent UAVs is shown in Fig. 2. The
UEs to UAV channels are predicted using DNN based on [15]
and are fed to DDPG. The DDPG is built on the actor-critic
framework, where the actor generates actions, and the critic
directs the actor to adjust the actions towards a higher reward.
On top of the critic and actor DNNs, DDPG includes also
a loss function, and a replay memory buffer helping to cope
with uncertainty in the accuracy of the DNN-based channel
quality prediction. The replay memory stores the experience
tuples with the present state S(t), the chosen action A(t),
the immediate reward r(t), and the next state. The replay
memory plays a crucial role in mitigating the problem of
temporal correlation in the experience tuples and improving
the overall stability and efficiency of the highly dynamic
handover environment. By randomly selecting experiences
from the memory, the agent can break the sequential nature of
the experiences, learn from a broader range of situations, and
ultimately improve the CIO setting of BSs. The replay buffer

allows the system to learn from past experience to mitigate
the propagation of the channel quality prediction error from
the DNN to the CIO setting.

The critic DNN in DDPG evaluates the actions, i.e., the
CIO setting, by estimating the total reward resulting from
the taken actions. More specifically, the critic DNN is trained
to estimate the cumulative reward R(s(t), a(t)) representing
the total expected sum of the rewards that the agent can
accumulate by taking the action a in the state s. The critic
DNN estimates the Q-value using the following steps: 1) the
critic takes the value of the state and the action (i.e., the
load of the BSs and the CIO setting), 2) the critic DNN
performs a forward pass through the DNN using a function
approximation, and 3) the estimated Q-value is extracted from
the output layer of the critic DNN.

The actor DNN measures a target Q-value or a target cu-
mulative reward, defined recursively using Bellman equation:

R(s(t), a(t)) = r(t) + ϵmaxR(s(t+ 1), a(t+ 1)) (8)

where, ϵ is the discount factor, s(t + 1) is the next state for
the next action a(t+ 1) and maxR(s(t), a(t)) represents the
maximum expected cumulative reward in the next state.

The training of the actor and critic DNNs aims at minimiz-
ing the difference between the predicted and target Q-values
by mean squared error loss function L, defined as:

L =
1

D

∑
l

[R(sl(t), al(t))−R′(sl(t), al(t))]
2 (9)

where D is the number of samples in the training batch and∑
l represents the summation over all transitions, where the

transition is an experience tuple consisting of state, action,
reward, and next state. The critic DNN is updated by min-
imizing the loss function (9) with respect to the parameter
θQ, which is updated until convergence is met. The actor
DNN is updated by computing the gradient of the expected
return J with respect to the actor parameters θδ,∇(θδ)J ≈
1/D

∑
l ∇aR(s, a|θQ)|(s=sl,a=δ(sl))∇(θδ)δ(s|θδ)|(sl), where

∇aR(s, a|θQ) computes the gradient of the critic’s policy with
respect to the action a, and ∇(θδ) δ(s|θδ) evaluates the actor’s
policy with respect to the critic’s policy θδ for each state
s. The expected return is updated with respect to the actor
parameter θδ using the gradient ∇(θδ)J , which guides the
learning process of the actor DNN to improve the policy for
reinforcement learning-based CIO adjustment.

The proposed DDPG for CIO setting has a low computa-
tional complexity with the number of mathematical operations
being approximately 2444 for G = 4 and F = 4 [15]. There-
fore, the computational demands are considered negligible and
do not hinder real-time processing at BSs with the computing
power currently available in the mobile networks.

V. PERFORMANCE EVALUATION

In this section, we outline simulation models and setup.
Then, we discuss related state-of-the-art works considered for
comparison. Last, we present and discuss simulation results.



Fig. 2. Proposed DDPG for CIO setting suitable for the environment with transparent UAV relays exploiting the UAV to UE channel prediction via DNN.

A. Simulation models and settings

Simulations are conducted in a suburban setting with an area
of 1000 × 1000m where four traditional GBSs are deployed
randomly with a minimum inter-site distance of 500 m.
Additionally, up to six UAVs are added to the simulation area.
In order to show the effects of the handover setting, we utilize
a comprehensive model incorporating dynamic movement of
both UEs and UAVs, as presented in [5], which allows for a
detailed examination of the complex interactions and transi-
tions in the network. There are in total 150 UEs, each moving
with a random speed ranging from 1 to 3 m/s, with all UEs
consistently active. Among these UEs, 60 UEs are uniformly
distributed around GBSs in a circular area with a radius of 150
m, moving arbitrarily within this region. Another 30 UEs are
evenly dispersed across the entire simulation area, following
a random waypoint mobility model [18]. The remaining 60
UEs adhere to a cluster movement model [19], where UEs are
distributed evenly across six clusters, each cluster containing a
varying number of UEs. UEs within a cluster are restricted to
a circular region with an 80-meter radius, and all UEs follow
the movement of the cluster center. The cluster movement
within the simulation area aligns also with a random waypoint
mobility model [18]. The movement of UAVs corresponds to
the center of gravity of the UEs attached to this UAV [20].
The code of implemented proposal is available at GitLab 1.

B. Competitive state-of-the-art works

We compare the proposed DDPG-based CIO setting (de-
noted as Proposed DDPG CIO) to the following competitive
state-of-the-art algorithms:

• Actor-critic DRL for CIO setting (AC-DRL CIO): The
actor critic-based DRL used for the CIO setting according
to the load of GBSs and handover cost, as presented in
[5] to maximize the sum capacity is the closest and most
recent state-of-the-art work.

• Adaptive CIO: The algorithm, described in [21], sets CIO
according to predefined load thresholds of GBSs, aiming
to minimize the number of handovers.

For all algorithms, we evaluate performance for the predicted
and actual channel qualities labeled in figures as Pred. chan
and Act. chan., respectively. The prediction of the UEs to
UAV channel quality is done using DNN proposed in [15]. In
case of the actual channel qualities, the DNN shown in Fig. 2
does not apply, as we assume the access channels are known

1Code of the proposal in Matlab: https://gitlab.fel.cvut.cz/mobile-and-
wireless/codes/publications/deep-reinforcement-learning-for-handovers-in-
mobile-networks-with-transparent-uav-relays

even though it is practically infeasible for the transparent UAV
relays. Still, considering also the theoretical case with actual
channels in evaluations allows to demonstrate the effectiveness
of the proposed DDPG-based CIO setting for handling the
error imposed by the DNN channel quality prediction.

C. Discussion of results

Fig. 3 investigate the sum capacity over varying minimum
required capacity by UEs creq. The sum capacity increases
with creq, as the resources are used in a more efficient way
(resources are allocated first to the UEs with a good channel)
for all algorithms. The improvement in sum capacity by the
proposed DDPG is up to 12.2% and 36.1% compared to AC-
DRL and adaptive CIO, respectively, for the predicted channel
quality case. The gain results from the capabilities of DDPG to
effectively deal with prediction errors in DNN-based channel
quality prediction. If the actual channels between UEs and
UAVs would be theoretically known, the proposed DDPG for
the CIO setting improves sum capacity by up to 5 % compared
to the case with predicted channels. However, for AC-DRL
and Adaptive CIO, the sum capacity is degraded notably by
about 6.6% and 9%, respectively. Hence, the DDPG suppresses
negative impact of DNN-based channel quality prediction for
transparent relays by more than 24% and 44% compared to
AC-DRL CIO and Adaptive CIO, respectively.

In Fig. 4, we illustrates the sum capacity for varying number
of UAVs. The sum capacity increases with the number of
UAVs as more UAVs improve SINR in the network despite
increased interference among the UAVs. The increase in sum
capacity by the proposed DDPG is up to 10.1% and 20.2%
compared to AC-DRL and Adaptive CIO, respectively, for the
predicted channel qualities. Compared to the theoretical case
with all access channels perfectly known, the channel quality
prediction leads to a decrease in sum capacity of the proposed
CIO setting by up to 4.6%, while AC-DRL and Adaptive CIO
leads to a drop of 7.2% and 9.7%, respectively. This shows that
DDPG suppresses negative impact of the DNN-based channel
quality prediction by roughly 36% and 53% compared to AC-
DRL CIO and Adaptive CIO, respectively.

In Fig. 5, we show sum of the number of handovers of UEs
and UAVs. The number of handovers increases with number
of UAVs as more UAVs perform handovers and also UEs have
more opportunities for handover as well. The proposed DDPG-
based CIO setting for predicted channel qualities reduces
number of handovers by up to 13.0% and 35.2% compared to
AC-DRL and Adaptive CIO, respectively. The channel quality
prediction results in additional handovers for all algorithms
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Fig. 6. Convergence of sum capacity as a function of the number of handovers
performed in the network, creq = 8 Mbps (using predicted channels).

compared to theoretical case with known channels, since
prediction error incurs additional (wrong) handovers. While
the number of handovers for AC-DRL CIO and Adaptive CIO
is increased by 13.3% and 15.6%, respectively compared to the
actual channel knowledge, the proposed DDPG CIO leads only
up to 9.8% increase in number of handovers. Thus, the DDPG
mitigates negative impact of the channel quality prediction
error on the number of handovers by up to 26% and by 37%
compared to AC-DRL and Adaptive CIO, respectively.

The convergence of the proposal, depicted as the sum
capacity over the number of performed handovers required
to train DDPG is shown in Fig. 6. The proposed DDPG CIO
approach convergences about 20% faster compared to the AC-
RL CIO. Besides, the sum capacity reached by the proposal is
always notably higher than that of competitive state-of-the-art
AC-DRL as well as Adaptive CIO algorithms.

VI. CONCLUSION

In this paper, we have addressed the challenges related
to handover in networks with the transparent UAV relays
employed due to cost and energy limitations. By proposing
a novel framework for setting the CIO of all BSs, we have
developed a DDPG-based solution maximizing the sum capac-
ity of the UEs while reducing the number of handovers. We
have also demonstrated, that potential accuracy in the channel
quality is suppressed significantly by the proposed DDPG-
based CIO setting compared to state-of-the-art works.
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