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Abstract—To ensure a seamless mobility of users in the
scenario with flying base stations (FlyBSs) and static ground base
stations (GBSs), an efficient handover mechanism is required.
In this paper, we introduce new framework simultaneously
managing cell individual offset (CIO) for handover of both
FlyBSs and mobile users. Our objective is to maximize capacity
of the mobile users while considering also a cost of handover
to reflect potential excessive signaling and energy consumption
due to redundant handovers. This problem is of a very high
complexity for conventional optimization methods and optimal
solution would require knowledge of information commonly not
available to the mobile network. Hence, we adjust the CIO of
FlyBSs and GBSs via reinforcement learning. First, we adopt Q-
learning to solve the problem. Due to practical limitations implied
by a large Q-table, we also propose Q-learning with approximated
Q-table. Still, for larger networks, even the approximated Q-table
can require a large storage and computation time. Therefore,
we apply also actor-critic-based deep reinforcement learning.
Simulation results demonstrate that all three proposed algorithms
converge promptly and increase the communication capacity
by dozens of percent while the handover failure ratio and the
handover ping-pong ratio are reduced multiple times compared
to state-of-the-art.

Index Terms—Flying base stations, handover, cell individual
offset, reinforcement learning.

I. INTRODUCTION

FLYING base stations (FlyBSs), essentially the unmanned
aerial vehicles (UAVs) carrying a hardware for wireless

communication, are seen as a suitable solution for the future
mobile networks due to their flexible deployment and high
mobility. The FlyBSs allow to extend the network coverage
[1], [2] and/or to boost quality of service in a specific area
[3], [4]. Due to a fast deployment, the FlyBSs are suitable also
for emergency situations or short-time events [5]. However, an
integration of the FlyBSs to the mobile networks introduces
new challenges, such as finding optimal position of the FlyBS
[6], optimizing the FlyBS’s trajectory [7], or an association
of user equipments (UEs) to the FlyBSs [8]. Besides, the
problem of power allocation and trajectory optimization for
the network with FlyBSs exploiting non-orthogonal multiple
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access (NOMA) is targeted, e.g., in [9] to improve the system
security. In [10], the UE’s association is optimized to increase
the sum capacity in the scenario with the FlyBSs operating
in mm-wave with massive multiple-input multiple-output an-
tennas. Furthermore, in [11], the authors study the sum rate
maximization in the network with FlyBSs and NOMA via
optimization of the FlyBS’s trajectory and precoding. In [12],
intelligent reflecting surfaces (IRS) are employed to boost the
network throughput and ensure a secure communication in the
network with FlyBSs.

In addition to these works, another key challenge is to
provide a seamless mobility of the FlyBSs among static ground
base stations (GBSs) [13]. The trajectory of the FlyBSs serving
mobile users is arbitrary and hard to be predicted, as it
depends on a random movement of the served UEs. The
arbitrary trajectory can lead to rapid changes in the quality
of channels between the FlyBS and the served UEs as well
as between the FlyBS and the GBS providing connectivity of
the FlyBS to the network. As a result, the mobile networks
with FlyBSs can suffer from following major problems that we
address in this paper: (a) rapid changes in quality of both the
FlyBS-UE channels and the GBS-FlyBS channels may lead
to unpredictable and frequent handovers and, consequently, to
handover failures or packet losses and significant degradation
in the Quality of Service (QoS); (b) unless the handovers of the
FlyBSs among the GBSs are carefully and jointly coordinated
with the handovers of the UEs among both GBSs and FlyBSs,
some GBSs might end up severely overloaded through a single
FlyBS handover.

In a common management of mobility of the UEs among
the GBSs, the handover is typically initiated when a target
GBS (i.e., the base station to which the handover should
be performed) provides a channel of a higher quality than
the current serving GBS. To avoid frequent handovers and/or
handover failures, the decision on the handover is controlled
and adjusted via parameters, such as a hysteresis, a time-to-
trigger (TTT), or a cell individual offset (CIO) [14]. Thus, the
handover is usually triggered when the target GBS provides
the channel of a quality that is at least the hysteresis and/or
the CIO above the quality of the channel to the serving GBS
for an interval of the TTT. An increase in hysteresis, CIO,
and/or TTT delays the handover triggering and, consequently,
reduces the amount of handovers, especially those that are
redundant (denoted often as ping-pong handover referring to
a repeated switching between a pair of the GBSs). However,
when the handover is over delayed, the quality of signal
received by the UE degrades too much and the UE is not able

This article has been accepted for publication in IEEE Transactions on Wireless Communications. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TWC.2022.3216342

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: CZECH TECHNICAL UNIVERSITY. Downloaded on December 05,2022 at 12:28:14 UTC from IEEE Xplore.  Restrictions apply. 



2

to communicate with any GBS. Equally importantly, handover
parameters (and, thus, also handover decisions) not only affect
individual channel qualities, but also the total load of the
serving GBS. For example, setting CIO of an overloaded GBS
to a low value while setting a high CIO for neighboring GBSs
allows to offload some UEs from the overloaded GBS to the
neighboring GBSs. Adding the CIO into handover decision
process can enhance the capacity of the UEs by triggering the
handover of the UEs towards an underutilized GBS, which is
able to provide a channel of maybe slightly worse quality, but
much wider [15].

In the mobile networks comprising only GBSs (i.e., no
FlyBS), the optimization of the handover decision parameters
has been extensively addressed. For example, in [16], the
authors propose an adaptation of the hysteresis according
to relative qualities of the channels from the serving and
neighboring GBSs. This approach reduces the number of
handovers; however, it does not improve the UEs’ throughput.
In [17], the authors adapt the hysteresis via fuzzy logic to
minimize the number of performed handovers. Nevertheless,
an impact of the handover on the throughput of the UEs is not
considered. A reactive load balancing algorithm based on Q-
learning is developed in [18]. The reactive algorithm adapts the
CIO of the serving and neighboring GBSs by a specific value
so that the offset for the serving and neighboring GBSs is of
the same absolute value, but opposite sign (e.g. –0.5 dB and
+0.5 dB for the serving and neighboring GBSs, respectively).
The CIO is adjusted according to a distribution of the cell-
edge UEs in the area according to [18]. However, the UEs’
distribution is typically unknown in practical scenarios. In
[19], the authors adjust CIO for the load balancing purposes.
Three predetermined thresholds are defined to distinguish four
levels of the GBSs’ load. A higher CIO is selected for the
GBS with a lower load, and a lower CIO is set for the highly
loaded GBSs. This CIO adjustment relieves the heavy traffic
load of the GBS; however, it does not consider an impact of
the handover on the throughput of UEs. In [20], the authors
propose a machine learning-based framework to determine the
optimal combination of CIO and hysteresis to maximize mean
Signal to interference and noise ratio (SINR) of the UEs in
the wireless network. The authors evaluate the performance
of five different machine learning models for prediction of the
mean SINR of the UEs with different combinations of CIO and
hysteresis. Nonetheless, this technique requires a big and hard
to collect set of training data to reach a sufficient accuracy.
The problem of GBSs’ CIO setting together with the trans-
mission power optimization using deep reinforcement learning
is considered in [15]. The authors propose an actor-critic-
based framework, which adjusts the CIOs and the transmission
power of GBSs. The proposed algorithm reflects the trade-off
between the UEs’ throughput and the number of covered UEs
in the mobile network and improves the average throughput
of the mobile network. However, an impact of the algorithm
on the number of handovers and related signaling overhead is
not considered.

Handover procedure is also challenging in the scenario
with deployed mobile relays, mounted on trains or public
transportation vehicles, since the mobile relays suffer from

handover failures due to a high speed. In [21], the authors
optimize the handover of mobile relays mounted on high
speed trains. The authors rely on a predictability of the trains’
movement on railways. The results show that the proposed
scheme reduces mobile relays’ handover time and signaling
overhead. The performance of the handover of mobile relay
installed at the roof-top of a bus is investigated in [22].
The proposed handover procedure reduces the overall power
consumption and the number of performed handovers. The
authors in [23] present a dual antenna handover scheme for the
mobile relay represented by high speed trains. The proposal
reduces both handover outage probability and communication
interruption probability. Since the mobile relays are typically
deployed on the trains of the public transportation vehicles,
as expected in [21]–[23], the above-mentioned works assume
the trajectory of mobile relays is predictable and the mobile
relays are almost static with respect to served UEs. However,
this is not valid in the scenarios with the UAVs acting as the
FlyBSs serving the moving UEs, since the trajectory of the
FlyBSs depends on the UEs’ movement and do not follow a
predictable pattern.

In contrast to a substantial research effort on handover in
conventional mobile networks, only limited amount of works
target handover management in the mobile networks with
UAVs in general. Few works study the problem of handover
in the mobile networks with the UAVs acting as the UEs
(UAV-UE), i.e., not serving any ground UEs. The handover
management for the UAV-UE via a dynamic adjustment of
the GBSs’ antenna tilt angles is outlined in [24]. The authors
demonstrate that an intelligent antenna tilting reduces the
number of handovers in a simple mobility scenario with the
UAV-UE traveling along a linear trajectory. In [25], the authors
propose a scheme adjusting the handover parameters for the
UAV-UEs while the handover decision is based on the UAV-
UE’s trajectory to reduce the number of performed handovers.
In [26], the handover based on the reinforcement learning is
proposed to maximize the received signal quality at the UAV-
UEs while minimizing the number of performed handovers. In
[27], the authors propose a route-aware handover algorithm to
improve a reliability of the UAVs’ communication. This solu-
tion utilizes a flight path information to minimize a probability
of the handover failure and to reduce the number of redundant
handovers. Furthermore, the handover decision scheme for the
UAV-UEs based on deep reinforcement learning is presented
in [28] targeting to find a trade-off between the received
signal strength and the frequency of handovers. Despite the
encouraging results, the works [24] – [28] assume the scenario
with a predefined and a priori known trajectory of the UAV-
UEs. This assumption is, however, not valid in the scenario
with the UAVs acting as the FlyBSs serving the moving UEs,
since the trajectory of the FlyBSs is a priori unknown and
depends on the UEs’ movement.

To our best knowledge, there is no paper dealing with
the handover of the UEs among all BSs, i.e., both FlyBSs
and GBSs, jointly with the handover of the FlyBSs among
the GBSs while considering also the cost of handovers. If
the UEs perform handovers among all BSs and, at the same
time, the FlyBSs perform handovers among the GBSs, the
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handovers occur frequently leading to excessive signaling
overhead and related additional energy consumption, which
can be critical for the energy constrained FlyBSs. Furthermore,
since not only the UEs, but also the FlyBSs move in an
unpredictable way, the overall scenario is significantly more
dynamic and less predictable compared to the scenario with
only GBSs or with the UAV-UEs. Both conventional and state-
of-the-art handover algorithms, however, do not take such
dynamicity into account and can lead to either redundant
handovers and/or to overloading of the BSs resulting into
frequent handover failure. In this paper, we focus on these
critical and challenging aspects of joint handovers of the
UEs among all BSs (comprising both FlyBSs and GBSs) and
handovers of the FlyBSs among the GBSs and we propose a
novel handover framework maximizing the sum capacity of
the users while avoiding redundant handovers and handover
failures. The major contributions of our paper are summarized
as follows:

• We propose a framework for setting of the CIO of
individual BSs (including both GBSs as well as FlyBSs)
to increase the sum capacity of the UEs while avoiding
redundant handovers. Due to dynamic nature and un-
predictable behavior of the UEs (and consequently also
FlyBSs serving these UEs) together with an indirect and
unpredictable relation between currently taken decision
and its future impact, we employ reinforcement learning,
which provides a solution for the problems with an
unknown environment assumed in our case.
First, we consider a tabular Q-learning framework for a
dynamic CIO adjustment. The Q-learning is known to
provably converge to the optimal solution and, hence,
provides an efficient mobility support in the sky.

• Despite theoretical advantages of the tabular Q-learning,
prohibitively large computation and storage resources are
required by the Q-learning. Therefore, we also consider
an approximate Q-learning that greatly reduces size of
the Q-table resulting in a lower computation and storage
requirements. The approximate Q-learning leads to only
a negligible decrease (below 2%) in the UEs’ capacity.
However, the number of ping-pong handovers is slightly
increased compared to the original Q-learning. Still, even
the approximate Q-learning can impose notable compu-
tation and storage resource requirement in large mobile
networks.

• To avoid the increased number of ping-pong handovers
due to approximate Q-learning and to overcome the
problem of computing and storage resources in the large
mobile networks, we extend our work towards the actor-
critic deep reinforcement learning framework for dynamic
CIO setting. Simulations demonstrate that the actor-critic
approach enables fast-convergence with only a marginal
degradation in the UEs’ capacity while no negative im-
pact on handover failure and ping-pong effect is observed
compared to the tabular Q-learning with complete Q-
table.

• We demonstrate that all three proposed solutions lead to
a notable increase in the UEs’ capacity and, at the same

Fig. 1. System model with multiple GBSs and multiple FlyBSs serving mobile
UEs. The FlyBSs serve the UEs and relay their data to the GBSs; while the
GBSs can server directly both the UEs as well as the FlyBSs.

time, to a significant decrease in the number of handover
failures and ping-pong handovers compared to state-of-
the-art works.

This paper is an extension of our prior works [29], [30],
where the handover of only FlyBS(s) is considered and the
handover of the UEs connected to GBSs is not taken into
account.

The rest of this paper is organized as follows. Section II
presents the system model and defines the problem addressed
in this paper. Then, in Section III, we present our proposed
reinforcement learning-based control of the CIO for the GBSs.
The simulation results and their discussion are provided in
Section IV. Last, Section V concludes the paper.

II. SYSTEM MODEL

In this section, we first outline the model of the system
considered in this paper and, then, we formulate the targeted
problem.

A. System model

In this subsection, first, the communication network model
is presented. Afterwards, the channel models are defined and
the handover procedure for both the UEs and the FlyBSs is
described.

1) Network model: We assume N UEs deployed in an
arbitrary area covered with KG conventional GBSs and ad-
ditional KF FlyBSs. Hence, in total, the area is covered by
K = KG+KF BSs. Note that the label BS represents jointly
the GBSs and the FlyBSs in this paper. Each UE in the system
is assumed to require the communication capacity creq from
the BS it is connected to. The required capacity creq can be
possibly a different for each UE. Out of N UEs, Nf UEs are
connected to the mobile network via the FlyBSs, which relay
the communication between the GBS and these UEs.

The position of the n-th UE changes over time and the
FlyBSs moves according to the movement of the connected
UEs. Without loss of generality, the position of each FlyBS
corresponds to the center of gravity of all UEs associated to
this FlyBS, as suggested in [31]. Note that the principle of the
proposed solution for the CIO adjustment does not depend
on the specific positioning of the FlyBSs and can be applied
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on the top of any other approaches. To maintain a reliable
connectivity, each FlyBS performs handovers during flight
and, thus, the association of the FlyBSs to the GBSs changes
over time. We define a binary parameter βg,f indicating if the
f -th FlyBS is associated to the g-th GBS (βg,f= 1) or not
(βg,f= 0).

2) Channel model: We consider the downlink communi-
cation from the GBSs to the UEs either directly or via the
FlyBSs. The SINR γg,n observed by the n-th UE served
directly by the g-th GBS is defined as:

γg,n =
Pghg,n∑K

i=1,i6=g Pihi,n + σ2
(1)

where Pg is the transmission power of the g-th GBS serving
the n-th UE, hg,n is the channel gain between the n-th UE
and the g-th GBS, the term

∑K
i=1,i6=g Pihi,n represents the

co-channel interference from other BSs, Pi is the transmission
power of the i-th BS representing the interference to the n-th
UE, hi,n corresponds to the channel gain between the n-th UE
and the i-th interfering BS, and σ2 represents the noise.

The SINR γf,n observed by the n-th UE from the f -th
FlyBS is defined as:

γf,n =
Pfhf,n∑K

i=1,i6=f Pihi,n + σ2
(2)

where Pf is the transmission power of the f -th FlyBS serving
the n-th UE, hf,n is the channel gain between the n-th UE
and the f -th FlyBS, the term

∑K
i=1,i6=f Pihi,n represents the

co-channel interference from other BSs.
Last, the SINR at the f -th FlyBS receiving data from the

g-th serving GBS is expressed as:

γg,f =
Pghg,f∑K

i=1,i6=g Pihi,f + σ2
(3)

where hg,f is the channel gain between the g-th serving BS
and the f -th FlyBS,

∑K
i=1,i6=g Pihi,f represents the interfer-

ence from other BSs, and hi,f stands for the channel gain
between the i-th interfering BS and the f -th FlyBS.

We adopt decode and forward relaying, hence, the relaying
channel capacity for the communication of the the n-th UE
via the f -th FlyBS is, in line with [32], defined as:

cn =
Bn
2
min{log2(1 + γg,f ), log2(1 + γf,n)} (4)

where Bn denotes the bandwidth of the n-th UE’s channel
expressed as the bandwidth requested by the UE to meet creq
(cn = creq):

Bn =
creq

log2(1 + γk,n)
(5)

where γk,n is the SINR observed by the n-th UE served by
the k-th BS. The bandwidth allocation is not directly related to
the handover decision itself. Thus, we assume the bandwidth
is allocated according to the UEs’ SINR in descending order
(i.e., the UE with the highest SINR is allocated first). If the
BS has enough resources to meet creq required by the UE,
Bn is allocated to this UE. This is repeated for next UEs
until there is not enough remaining bandwidth that can satisfy
requirements of any further UE. The remaining bandwidth of

the BS is, then, divided equally among the rest of UEs served
by the given BS.

The k-th BS serves a set of the UEs imposing, in total, load
ρk to this BS. The load is defined as the ratio of the bandwidth
allocated to the UEs served by the k-th BS versus the total
bandwidth available for the given BS, i.e.:

ρk =

∑
n∈N βk,nBn +

∑
f∈Kf

(
βk,f

∑
n∈N βf,nBn

)
B

(6)

where the binary parameter βk,n ∈ {0, 1} indicates if the n-
th UE is associated to the k-th BS (βk,n = 1) or not (βk,n
= 0), the term

∑
n∈N βk,nBn represents the sum bandwidth

allocated to the UEs directly connected to the k-th BS, and
the term

∑
f∈Kf

(
βk,f

∑
n∈N βf,nBn

)
represents the amount

of bandwidth allocated to the f -th FlyBS if the f -th FlyBS is
associated to the k-th BS to serve the UEs connected via the
f -th FlyBS.

3) Handover procedure: Handover between the serving BS
and the target BS is triggered according to commonly adopted
event A3, defined by 3GPP (see, e.g., [14]). Hence, the UE
performs handover to the target BS if the following equation
is satisfied for at least the period of TTT:

Ptht,n + CIOt −Hys > Pshs,n + CIOs (7)

where the indices s and t correspond to the parameters of the
serving and target BSs, respectively, and Hys is the value of
the hysteresis in dB. The channel quality is represented by the
received signal strength expressed as Pkhk,n, where hk,n is
the channel gain between the k-th BS and the n-th UE.

Each FlyBS can perform handover(s) among the GBS
during the service provisioning to the UEs. Like the common
UEs in the mobile networks, also the FlyBS measures the
channel quality from the neighboring GBSs. The channel
quality measurement report is periodically sent to the serving
GBS in a similar way as the common UEs report their channel
quality in the mobile networks [24]. Based on the measurement
results, the handover of the FlyBS to one of the neighboring
GBSs is triggered if the condition in (7) is satisfied for at least
the period of TTT.

B. Problem formulation

Our objective is to optimize handover decision in the mobile
networks encompassing both GBSs as well as FlyBSs serving
mobile UEs via optimization of CIO. The CIO setting directly
impacts the handover decision as indicated in (7). Handovers
resulting from the chosen CIO may increase the capacity
of both FlyBSs as well as UEs by handovering to the less
congested BS. Thus, our objective is to adjust the CIOs of all
BSs (i.e., both GBS as well as FlyBSs) so that the sum capacity
of the UEs served by the FlyBSs is maximized. However, using
the sum capacity as a sole objective could lead to an excessive
number of redundant handovers resulting in an additional
signaling overhead increasing the energy consumption in both
the communication network and the handovering devices (UE
or FlyBS) [33]. Thus, the number of handovers should be
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accounted for to enable affordable cost for network operation.
Hence, the targeted problem is formulated as:

CIO∗CIO∗CIO∗ = argmax
CIOCIOCIO∈O

Nf∑
n=1

cn − µ (8)

where O = 〈CIOmin, CIOmax〉 defines the set of possible
CIO values ranging from CIOmin to CIOmax and µ denotes
the handover cost. In this work, we assume that each UE is
associated to just one BS and each FlyBS is associated to just
one GBS.

III. PROPOSED ADAPTIVE CIO ADJUSTMENT BASED ON
REINFORCEMENT LEARNING

Our objective is to optimize the handover decision at a
current step and, consequently, improve the performance in
all subsequent steps. Such problem is complex and non-trivial
due to a high randomness of the mobile network environment
caused by the mobility of both the UEs and the FlyBSs.
Moreover, the FlyBSs change their positions as the served UEs
move, hence, the positions of the FlyBSs are hard to predict
and do not follow any easily predictable pattern. Since we do
not know future movements of the UEs and the FlyBSs, the
decision on a change in CIO influences the future performance
in an indirect and unpredictable way. Thus, the decisions
should be only taken based on currently known information.

To solve the problem defined in (8) via conventional op-
timization techniques, a very accurate modeling of the opti-
mized system would be required. Nevertheless, the modeling
of the optimized system is not possible due to a significant
uncertainty in the behavior of UEs and FlyBSs and due to the
indirect and unpredictable impact of changes in CIO on future
performance. Besides, our targeted problem falls under NP-
hard problems, because of the non-linear and indirect coupling
of two main variables characterizing our problem, i.e., between
the CIO and the capacity of UEs. In addition, the complexity of
such problem increases exponentially as the network expands
(in terms of the number of BSs).

Thus, we apply reinforcement learning to solve our problem
of the CIO setting. The adopted model-free reinforcement
learning-based solution allows to solve the defined problem
without requiring explicit system modeling, which is not
available for our problem. Furthermore, the dynamic nature
of reinforcement learning with the ability to adapt real-time
observations is also suitable for the dynamic network with
moving FlyBSs and UEs.

Unlike other machine learning algorithms requiring to gen-
erate data for an offline training phase, reinforcement learning
allows the mobile network to learn and improve its decision
by interacting with an unknown environment and exploiting
received feedback. Reinforcement learning is a sequential de-
cision making control algorithm, which can learn to optimally
tradeoff the decision impact of the immediate step with the
impact of future decisions for forthcoming system states, as
required to solve our problem.

We propose the reinforcement learning-based algorithm to
obtain the optimal CIO adjustment policy for the serving as
well as target BSs. In following subsections, we first present

the proposed Q-learning based CIO adjustment scheme. Then,
we introduce the extended Q-learning based solution with
approximate Q-table to relax requirements related to the Q-
table size in practical applications. Afterwards, we present
an actor-critic-based approach, which allows to completely
circumvent the problems with the Q-table size even in large
mobile networks while mitigating a small performance drop
introduced by the approximate Q-table.

A. Q-learning based CIO adjustment

The reinforcement learning is often described via Markov
decision process (MDP) characterized by a tuple consisting
of (S,A, P,R), where S and A denote the sets of all possi-
ble states and actions, respectively, P denotes the transition
probabilities for the states if the particular action from the set
A is taken, and R is the reward function [35]. At each state,
the MDP takes the action maximizing the expected sum of
discounted future rewards. To solve the MDP corresponding
to reinforcement learning, we use Q-learning. In Q-learning,
using the iterative process, the agent learns the action-value
function Q(st, at), which indicates how good the action at
performed in the state st is. The learned value Q(st, at) is
updated as follows:

Q(st, at)← Q(st, at)+α[ rt+λ(maxQ(st+1, a))−Q(st, at)] ,
(9)

where rt is the immediate received reward, st+1 is the next
state, α ∈ 〈0, 1〉, represents the learning rate balancing new
information against previous knowledge, and λ ∈ 〈0, 1〉 is the
discount factor balancing between the immediate and future
rewards.

Now, we define the reward function and the sets of states
and actions for our targeted problem.

Reward function: The reward function r(t) should mimic
the objective of the formulated problem. Hence, considering
the problem formulation, the reward function reflects the
objective to maximizing the sum capacity of UEs served by
FlyBS and avoiding the redundant handovers by taking into
account the cost associated to handover events. Thus, we
define the reward function as:

r(t) =

∑Nf

n=1 cn(t)

Nfcreq
−

(
nh∑
i=1

ρi
ρt,i
ρs,i

+ nhµu

)
, (10)

where ρt,i and ρs,i correspond to the load of target and serving
BSs, respectively, ρi corresponds to the load implied by the
UE performing handover, nh is the number of UEs performing
handover at the same time slot (for handover of the FlyBS, nh
is equal to the number of UEs served by this FlyBS), and µu
denotes the handover cost for the UE. The term

∑nh

i=1 ρi
ρt,i
ρs,i

entails preventing handovers from the underloaded BSs to the
overloaded BSs to avoid unnecessary handovers and handover
failures caused by an overloading of the BSs.

State Space: In this work, the state comprises of two
elements: 1) the load of the BSs; and 2) the load im-
plied to the BS by the UE(s) performing handover. Thus,
the set of states S(t) is defined as a vector S(t) =
[ ρ1(t), ρ2(t), . . . , ρk(t), ..., ρK(t), ρh(t)] of a length K + 1,
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where ρk(t) ∈ {0 : 0.01 : 1} corresponds to the load of the
k-th BS (k ∈ 〈1,K〉) at the time t, ρh(t) ∈ {0 : 0.01 : 1}
is the load (i.e., resources required to meet creq) implied by
the UE or by the FlyBS performing handover at the time t.
For the purposes of the state definition, the load values are
rounded to two decimal points in order to discretise the state
space with a negligible loss in accuracy (maximum inaccuracy
is ±0.5%). Hence, the size of the states’ space is defined as
(0 : 0.01 : 1)K+1.

Action Space: The agent controls the CIO of all BSs via the
actions A(t). The action is understood as a selection of the
CIO for each BS. We present the action space at the time t as
a vector A(t) = [CIO1(t), CIO2(t), ..., CIOk. . . , CIOK(t)]
of a length K, where the CIOk(t) corresponds to the CIO of
the k-th BS (k ∈ 〈1,K〉) at the time t. The values of CIOk(t)
are selected from the discrete set of 〈CIOmin, CIOmax〉 dB
of a size L (i.e., with L possible values of CIO), where
CIOmin and CIOmax are the minimum and maximum pos-
sible CIOs in the system, respectively. This creates the action
space of LK possible actions.

This definition of the state and action spaces for Q-learning
is further referred to as Proposal QL in the rest of the paper.

In the Q-learning, the agent determines when and how much
to explore the state-action space before exploiting the learned
knowledge. To balance exploration and exploitation, we adopt
the ε-greedy policy, where the agent tries to obtain the highest
reward at each training step, however, the agent also checks
for other actions to discover those that can potentially improve
the estimated future reward [35]. The learning starts with ε =
1 to explore large space of possible actions and to avoid local
optima. Then, ε is continuously reduced to ε = 0 by multiplying
ε with a decay factor at each learning step [24].

B. Q-learning based CIO adjustment with approximate Q-
table

In our setup, the state and action spaces grow exponentially
with the number of BSs. Consequently, the Q-table of the
Proposal QL becomes large and can be difficult to train.
Therefore, we further propose to reduce the dimensions of the
Q-table by approximation of the spate and action space. This
approach with the approximate Q-table, which has the reduced
state and action spaces, is further referred to as Proposal
AQL. We define reward suction and state and action spaces
as follows.

Reward function: The reward function for the Proposal AQL
is defined in the same way as for the Proposal QL, see (10).

State Space: To reduce the state space, we define M prede-
termined thresholds (THs) to divide the load of the BSs into
M+1 levels:

sk(t)←



1, if ρk(t) < TH1

2, if TH1 6 ρk(t) < TH2

...
M, if THM−1 6 ρk(t) < THM

M + 1, otherwise,

(11)

where ρk(t) ∈ [0, 1] corresponds to the load of the k-th BS
(k ∈ 〈1,K〉) at the time t.

The proper setting of the thresholds is crucial for the
performance. We use a standard state aggregation technique
[35] and define state elements as the load levels of the BSs,
each level corresponds to specific and unique range of the
load. Thus, the state S′(t) for the Q-learning based CIO
adjustment with approximate Q-table is defined as a vector
S′(t) = [ss(t), s1(t), s2(t), . . . , sk(t), . . . , sK(t), sh(t)] of a
length K + 1, where ss(t) ∈ 〈1,M + 1〉 corresponds to the
load level of serving BS at the time t, sk(t) ∈ 〈1,M + 1〉 is
the load level of the k-th neighboring BS (for k ∈ 〈1,K− 1〉,
and sh(t) ∈ 〈1,M + 1〉 is the load level implied by the UE
or the FlyBS performing handover at the time t. The size of
the state space for the Proposal AQL is (1,M + 1)K+1.

Action Space: To reduce also the action space, we introduce
relative CIO values so that (7) is rewritten as:

Ptht,n + CIOs→t > Pshs,n +Hys (12)

where CIOs→t = CIOt − CIOs is the relative CIO
value of the s-th serving BS with respect to the t-th target
BS. As a result, each serving BS has a single CIO value
for each neighbor BS. Hence, the action is understood
as a selection of the relative CIO values of the serving
BS with respect to its all neighboring BSs: A′(t) =
[CIOs→2(t), CIOs→3(t), . . . , CIOs→k(t), ..., CIOs→K(t)],
where CIOs→k(t) corresponds to the relative CIO of
the serving BS s with respect to its k-th neighboring BS
(k ∈ 〈2,K〉). In comparison with the action set for the
Proposal QL, where the CIO is assigned to each individual
BS, here, the CIO is assigned to a pair of the serving and
neighboring BSs. Consequently, the number of possible
actions is only LK−1.

C. CIO adjustment based on Actor-Critic deep reinforcement
learning

The Q-learning uses the Q-table to store value functions
of each state action pair for iterative computations. Even
for the approximate Q-table in the Proposal AQL introduced
in Section III-B, the number of states and actions increases
exponentially with the number of BSs and it is impractical and
expensive to compute and store all value functions for every
state action pair within the Q-table for large communication
networks. Moreover, the state quantization performed in the
Proposed AQL in Section III-B introduces quantization noise,
which might impede the algorithm to find the true optimal
policy. Thus, we further replace Q-learning with deep rein-
forcement learning, which uses the neural network to replace
the role of Q-table. More specifically, we use the actor-critic
algorithm as the deep reinforcement learning framework, since
the actor-critic provides fast convergence properties and a
capability to deal with a large action space [36], as in our
optimization problem. The actor-critic is a deep reinforcement
learning framework splitting the model into two components,
an actor and a critic, to combine benefits of both the actor-only
(e.g., natural gradient [37]) and the critic-only (e.g., Q-learning
[38], SARSA [39]) approaches. In the actor-critic framework,
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Fig. 2. Structure of the actor-critic deep reinforcement learning agent.

the learning process alternates between the policy evaluation
by the critic and the policy improvement by the actor.

The structure of the actor-critic agent proposed to solve
our problem is shown in Figure 2. In the proposed scheme,
the actor-critic algorithm makes decisions on CIO setting in
following way. First, the actor neural network define parame-
terized policy and chooses the CIO for all BSs according to the
observed load status of the BSs. Then, the critic neural network
evaluates the current policy by processing the rewards received
from the environment and calculates the Temporal Difference
(TD) error. Both the critic and actor neural networks are
updated based on the TD error, which represents the error
between the estimated value and the true value of the state-
value function.

The TD error is commonly used to update the evaluated
state-value function V (st) in the critic to enhance the learning
efficiency [40] and to train the critic neural network. The TD
error δ(st) is expressed as:

δ(st) = rt + Vω(st+1)− Vω(st) (13)

where Vω(st) is the state-value function parameterized by the
vector ω.

The critic updates the weights of the neural network accord-
ing to the square of TD error δ2(st):

ωt+1 ← ωt + αc∇ωδ2(st) (14)

where αc is the learning rate of the critic.
The aim of the actor is to take the CIO adjustment decision

maximizing the expected cumulative rewards according to the
current state. The weight θ of the actor neural network is
updated using TD error and the policy gradient as:

θt+1 ← θt + αa∇ω[logπθ(at|st)]δ(st) (15)

where αa is the learning rate of the actor, and πθ(at|st) is the
output probability for each action calculated by the actor.

To apply the actor-critic algorithm for the dynamic CIO
setting, we interpret the optimization problem as the MDP. We
use the definition of reward, states, and actions as in Section
III-A. The state comprises of the load of the BSs and the load
(i.e., required resources to meet creq) implied by the UE or by
the FlyBS performing handover at the time t, hence, the state
space is defined as S(t) = [ ρ1(t), ρ2(t), . . . , ρk(t), ..., ρK(t),
ρh(t)] . The action is understood as a selection of the CIO
for each BS and the action space is defined as A(t) =
[CIO1(t), CIO2(t), ..., CIOk. . . , CIOK(t)]. The reward for
the actor-critic approach is defined in the same way as for the

Proposal QL, see (10). Note that concrete hyperparameters
of both actor and critic neural networks are specified and
explained in Section IV-A.

IV. PERFORMANCE EVALUATION

In this section, models, scenario, and deployments used for
performance evaluations are outlined. Afterwards, the perfor-
mance metrics and the competitive state-of-the-art algorithms
are defined. Last, the results of simulations are presented and
performance of the proposal is compared with the state-of-the-
art algorithms.

A. Simulation models and scenarios

The simulations are performed in MATLAB. We consider
a suburban scenario with the simulation area of 1000× 1000
m. Within this area, three conventional GBSs are deployed
randomly with a minimum inter-site distance of 500 m.
Furthermore, up to six FlyBSs are placed in the simulation
area. The position of each FlyBS corresponds to the center
of gravity of all UEs associated to this FlyBS [31]. Note that
the proposed solution is suitable for any other approach of the
FlyBSs’ positioning and we adopt center of gravity for its low
complexity. The BSs serve 150 UEs moving with a random
speed varying between 1 and 3 m/s and all UEs are active all
the time. Out of all UEs, 60 UEs are randomly distributed and
deployed uniformly around GBSs within a circular area with
a radius of 150 m and these UEs move arbitrary within this
circular area. Another 30 UEs are deployed uniformly within
the whole simulation area and move independently according
to a random waypoint mobility model [41]. The remaining 60
UEs follow the cluster movement model according to [42],
[43]. These 60 UEs are, thus, uniformly distributed in up
to six clusters. The number of UEs in each cluster is also
random. The UEs in the same cluster are located within a
circle with a radius of 80 m. All UEs within one cluster follow
the same cluster movement trajectory (defined by the center
of the cluster). The cluster movement within the simulation
area is inline with a random waypoint mobility model [41].
A movement of each UE within the cluster is arbitrary in
the whole simulation area. We assume the same creq of all
UEs for a clarity of the following explanations and results’
presentation. However, our proposed solution is suitable for
any, even diverse creq for individual UEs.

Handover procedure is triggered according to A3 event (see
(7)). We set hysteresis Hys and TTT to 3 dB and 0.16 s,
respectively in line with [44].
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TABLE I
SIMULATION PARAMETERS

Parameter Value
Simulation area 1000 × 1000 m
Carrier frequency 2 GHz
Tx power of GBS/FlyBS 23/15 dBm
Bandwidth of GBS 100 MHz
GBS/FlyBS/UE height 30/80/1.5 m
Number of UEs 150
Hysteresis margin 3 dB
TTT 0.16 s
Time step 1 s
CIO set {-6, -3, 0, 3, 6} dB [47]

The channel between the FlyBS and any ground unit, i.e.,
GBSs or UEs, is modeled as the air-to-ground (A2G) com-
munication according to [45], with the suburban environment
parameters (“suburban” channel model, i.e., a = 4.88, b =
0.43, ηLoS = 0.1 and ηNLoS = 21, see [45] for more
details). The channel between the GBSs and the UE is modeled
according to [46] with the path loss model 128.1+37.6log10d,
where d (in km) is the distance between the UE and the GBS.

We consider 100 random and independent realizations with
25.000 time steps per realization and with a duration of each
step of 1 second. In each realization, the positions of the UEs,
corresponding trajectory of the FlyBSs, and the positions of
the GBSs are random. The results of all realizations are then
averaged out to suppress an impact of the randomness in the
models.

For the Q-learning training purpose, different settings of α
and λ have been tested and we have observed that α = 0.5 and
λ = 0.6 are the most suitable for the proposed algorithm. The
values of CIO are determined from the set {−6,−3, 0, 3, 6}
dB [47]. Note that, also in this case, we have tested other
sets with smaller steps of 1 and 2 dB, but there is no notable
impact on the performance. Hence, we select the step of 3 dB,
since the larger the step is, the smaller the Q-table is. Table I
summarizes the major parameters used in our simulations.

The actor-critic agent consists of two fully connected neural
networks as the approximators for the actor and the critic. The
actor neural network has four hidden layers, each with 120
neurons and with ReLU adopted as the activation function.
The output layer of the actor has LK neurons. Since the action
space is discrete, we use softmax function at the output layer of
the actor neural network to obtain the scores of each action.
The critic neural network, which computes the value of the
chosen action, has three hidden layers of 120 neurons in each
layer and with ReLU again used as the activation function.
The output layer of the critic has one neuron. The number of
hidden layers and the number of neurons in each hidden layer
are set by a trial and error approach. Since the critic evaluates
the decision made by the actor, the learning rate of the actor
neural network should be smaller than that of the critic neural
network to make the actor converging slower than the critic.
We set the learning rate of the actor and critic neural networks
experimentally via a trial and error approach to 0.01 and 0.001,
respectively.

B. Performance metrics

Three metrics commonly adopted for an evaluation of the
handovers in mobile networks are considered for the perfor-
mance evaluation: capacity of UEs, handover failure ratio, and
handover ping-pong ratio. We define these metrics as follows.

The capacity of UEs is understood as the summation of
the communication capacities of all UEs averaged out over
the simulation period T , i.e., the capacity is defined as
1
T

∑T
t=1

∑N
n=1 cn.

A handover failure occurs when the UE fails to complete
the handover procedure after the handover is triggered. In
our case, the handover failure is determined according to
the downlink SINR. Hence, when SINR is lower than the
threshold Qout (set to –8dB in our simulations according
to [49]), a bad channel condition is indicated and the timer
T310 is triggered. The handover failure is declared when T310
expires. We set the timer T310 to 1s, corresponding to a
default value in 3GPP standards for 5G [14]. We measure
the performance via handover failure ratio (HFR) defined as
the ratio between the number of handover failures Nfail and
the number of handovers (given by the sum of the number
of the failed handovers Nfail and the number of successful
handovers Nsuc):

HFR =
Nfail

Nfail +Nsuc
(16)

The ping-pong handover is the frequent handover from
one BS to another and back in a short time. The more this
phenomenon occurs, the more handovers are processed and
more signaling messages are generated. For this reason, the
ping-pong effect should be avoided. The handover ping pong
ratio HPR is defined as follows. If a connection is handed
over to a new BS and handed back to the original serving BS
in less than a critical time, denoted as minimum time-of-stay
(tMTS), the handover is considered as the ping pong handover
[49]. The handover ping pong ratio represents the number of
ping pong handovers NPP divided by the total number of
successful handovers Nsuc (excluding the failed handovers),
i.e.:

HPR =
NPP
Nsuc

(17)

C. Competitive algorithms

The proposed algorithms are compared with following
benchmarks and recent state-of-the-art works to demonstrate
superiority of our proposal:

1) no FlyBS, i.e., all UEs are served only by the GBSs
with CIO set to 0 dB for all GBSs [48]; this benchmark
serves to confirm that the deployment of the FlyBSs
in our scenario is meaningful and the FlyBSs do not
degrade the performance;

2) Adaptive CIO adjustment algorithm from [19], which
sets CIO based on predetermined GBSs’ load thresh-
olds and targets to minimize the number of performed
handovers;

3) Only FlyBSs CIO algorithm, introduced in our prior
work [30], adopting the Q-learning for the handover of
FlyBSs, however, taking only the handover of FlyBSs
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(a) (b) (c)
Fig. 3. Impact of the number of thresholds (M ) for Q-table reduction on: (a) the capacity of all UEs; (b) handover failure ratio HFR for all handovers; (c)
handover ping-pong ratio HPR for all handovers.

into account while considering neither the UEs’ han-
dover nor the handover cost;

4) Exhaustive search checks all possible CIO settings for
the handover of each UE and FlyBS and picks the CIO
yielding the highest UEs’ capacity in every time step to
determine the maximum achievable capacity.

D. Simulation results

In this subsection, we first demonstrate the impact of the
state space reduction on the performance of the Proposal
QL and the Proposal AQL. Then, we show an impact of the
handover cost on capacity achieved by all algorithms. After-
words, we evaluate the capacity achieved by the algorithms for
different numbers of deployed FlyBSs and we demonstrate
the learning progress of the proposed algorithms. Last, we
show the handover failure and ping-pong ratios reached by
individual algorithms.

1) Impact of Q-learning table size reduction: Before com-
paring our proposal with the competitive state-of-the-art algo-
rithms, let us demonstrate an impact of the Q-table size and its
reduction (i.e., impact of the threshold for the BS load levels
M ) on the performance of the Proposal QL and the Proposal
AQL. Individual subplots in Figure 3 show the capacity of the
all UEs (subplot a), the handover failure ratio HFR for all
handovers (subplot b), and the handover ping-pong ratio HPR
for all handovers (subplot c). We investigate performance of
the Proposal AQL for M equal to nine, four, and three BS’s
load thresholds corresponding to ten, five, and four load levels,
respectively. The difference in the capacity achieved by the
Proposal AQL with M = 9 and 4 predetermined thresholds is
negligible (less than 0.5%) while a further reduction to M = 3
decreases the capacity by 5%. At the same time, the Proposal
AQL with M equal to 9 and 4 reaches the capacity only 1.5%
and 2% below the Proposal QL, respectively.

Figure 3b shows the Q-table approximation has a marginal
impact on the HFR and the Proposal AQL adds only less than
0.01% (for M=9) and 0.03% (for M=3) to the HFR compared
to the Proposal QL with full-size Q-table. Furthermore, Figure
3c demonstrates the approximation of the Q-table in the
Proposal AQL leads to an increase in the HPR from roughly
0.9% reached by the full Q-table in the Proposal QL to about

1.4% and 1.65% in case of the Proposal AQL% with M=9
and M=3, respectively.

Based on the results in Figure 3, further evaluations of the
Proposal AQL are performed for the reduced state space with
M = 4 predetermined thresholds dividing the load of the BSs
into five levels. This value of M leads to a significant reduction
in the Q-table size (from 100K+1 states to 5K+1 states) while
an impact on the capacity, HFR, and HPR is still marginal.

2) Impact of handover cost on capacity: Furthermore, let us
demonstrate an impact of the handover cost on the capacity
for all variants of the proposals as well as for competitive
algorithms in Figure 4. Individual subplots show the capacity
of all UEs (subplot a), the UEs served by the FlyBSs (subplot
b), and the UEs served by the GBSs (subplot c). For a low
handover cost, no negative impact on the sum capacity is
observed, since the low handover overhead is compensated
by an increase in the capacity of the handovering UE(s).
However, for a higher handover cost, a decrease in the sum
capacity is observed with a similar slope for all algorithms.
This decrease is because an improved sum capacity due to
handover cannot longer compensate a high handover cost.
Based on the handover management procedure defined by
3GPP [50], the handover overhead typically ranges in order of
dozens to hundreds kb per UE per handover. Hence, for further
analysis, we select µu =100 kb. Note that Figure 4 confirms
that the relative gains introduced by the proposed algorithms
with respect to state-of-the-art work are almost independent
of the selected handover cost.

3) Capacity of UEs: Now, we demonstrate an impact of
creq on the capacity of the UEs for our proposals and the
state-of-the-art algorithms in Figure 5. Individual subplots
show the capacity of all UEs (subplot a), the UEs served
by the FlyBSs (subplot b), and the UEs served by the GBSs
(subplot c). The proposed algorithms Proposal AQL, Proposal
AC, and Proposal QL outperform the state-of-the-art Adaptive
CIO by up to 15.6%, 17% and 17.5%, respectively; and also
our prior work Only FlyBSs CIO by up to 6.7%, 8.1% and
8.5%, respectively, in terms of the capacity of all UEs (see
Figure 5). This increase in the UEs’ capacity is because the
proposed algorithm prevents the BSs’ overloading and fairly
distributes the FlyBSs among the GBSs and the UEs among
the BSs by setting different CIO for all BSs. The Proposal
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(a) (b) (c)
Fig. 4. Impact of handover cost on capacity of: (a) all UEs; (b) only UEs served by four FlyBSs ; (c) only UEs served by GBSs.

(a) (b) (c)
Fig. 5. Impact of creq on capacity of: (a) all UEs; (b) only UEs served by FlyBSs; (c) only UEs served by GBSs; for handover cost = 100 kb.

QL provides a slightly higher capacity in comparison to the
Proposal AQL and the Proposal AC. The capacity achieved
by the Proposal AC is only 1% below the Proposal QL,
since the actor-critic approach can mimic well the behavior
of the complete Q-table considered in the Proposal QL. In
the Proposal AQL, the quantization of the load of BSs into 5
(M +1) levels introduces a quantization noise, which slightly
degrades the capacity (by up to 2% compared to Proposal QL).
Still, all variants of the proposal reach capacity close to the
upper bound determined via the Exhaustive search with only a
marginal difference lower than 3.4%, 2.5%, and 1.9% for the
Proposal AQL, Proposal AC, and Proposal QL, respectively.

As our main objective is to optimize the handover decisions
for the FlyBSs, we demonstrate the capacity of UEs served
by FlyBSs in Figure 5b. For all algorithms, the capacity of
UEs served by FlyBSs raises with creq up to roughly creq =
20 Mbps. Then, for creq higher than 20 Mbps, the capacity
becomes almost constant or even starts slightly decreasing.
This saturation and/or decrease in the capacity of the UEs
is a result of the limited bandwidth of the GBS. Hence,
while all UEs (served by any BS) require a higher capacity,
the GBSs still have only the same bandwidth that can be
allocated. However, the proposed algorithm outperforms both
the Adaptive CIO and our prior work Only FlyBSs CIO for
all creq values. For four FlyBSs, the proposed algorithms
Proposal AQL, Proposal AC, and Proposal QL increase the
capacity by up to 32.5%, 34%, and 34.8%, respectively,
compared to the Adaptive CIO and by up to 12.2%, 14%,
and 14.6%, respectively, compared to the Only FlyBSs CIO

algorithms. The proposed algorithms Proposal AQL, Proposal
AC, and Proposal QL achieve the capacity close to the upper
bound (determined via Exhaustive search) with up to 4.6%,
3.5%, and 2.5% degradation, respectively.

To demonstrate that the proposed algorithms do not have a
negative impact on the UEs served by the GBSs, in Figure 5c,
we show the capacity of the UEs served only by the GBSs.
The UEs’ capacity for all compared algorithms is similar
and the proposal even slightly increases the capacity of the
UEs attached to the GBSs by up to 6% and 4% compared
to the Adaptive CIO and the Only FlyBSs CIO algorithms,
respectively. The capacity loss of our proposals compared to
the Exhaustive search is always lower than 2%.

Next, lets investigate an impact of the number of FlyBSs on
the capacity of UEs for our proposal and the competitive state-
of-the-art algorithms in Figure 6. Individual subplots, again,
show the capacity of all UEs (subplot a), the UEs served by the
FlyBSs (subplot b), and the UEs served by the GBSs (subplot
c). The proposed algorithm outperforms the Adaptive CIO and
Only FlyBSs CIO algorithms in the capacity disregarding the
numbers of the FlyBSs. The relative gain in the capacity for
all UEs (Figure 6a) achieved by the proposed algorithm with
respect to the state-of-the-art algorithms even slightly increases
with the number of the FlyBSs, since the proposed algorithm
prevents the FlyBSs and the UEs from connecting to the same
GBS simultaneously to avoid the overloading of the GBSs.
The achieved capacity starts saturating for a higher number
of the FlyBSs due to the limited amount of bandwidth and
the interference among the FlyBSs and the GBSs, since the
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(a) (b) (c)
Fig. 6. Impact of number of FlyBSs on capacity of: (a) all UEs; (b) only UEs served by FlyBSs; (c) only UEs served by GBSs; for creq = 25 Mbps and
handover cost = 100 kb.

additional FlyBSs increase interference level in the system. For
six FlyBSs, the proposed algorithms Proposal AQL, Proposal
AC, and Proposal QL increase the capacity of all UEs by
up to 16.3%, 17.3%, and 17.7%, respectively, compared to
the Adaptive CIO and by up to 7.2%, 8.1%, and 8.6%,
respectively, compared to the Only FlyBSs CIO. The capacity
achieved by the proposals is close to the upper bound reached
by the Exhaustive search with the difference always below
3.5% for all UEs regardless the number of FlyBSs.

Figure 6b show the proposed algorithms Proposal AQL,
Proposal AC, and Proposal QL increase the capacity of the
UEs served by the FlyBSs by up to 32.5%, 34%, and 35%,
respectively, compared to the Adaptive CIO and by up to
12.3%, 14%, and 14.6%, respectively, compared to the Only
FlyBSs CIO. The increase in the capacity of the UEs served
by the FlyBSs achieved by the proposed algorithm is a result
of a proper CIO setting for all BSs and a fair distribution of
the FlyBSs among the GBSs.

Last, Figure 6c confirms that the gains in the capacity of
the UEs served by the FlyBSs (demonstrated in Figure 6b) is
not at the cost of the capacity of the UEs served by the GBSs.
Our proposals even slightly (by 2-6%) increase the capacity of
the UEs served by the GBSs compared to the state-of-the-art
Adaptive CIO and Only FlyBSs CIO algorithms regardless of
the number of FlyBSs. The proposed algorithms achieve the
capacity close to the upper bound with only an insignificant
degradation in a range of 0.8-2.2%.

The capacity gain achieved by our proposal slightly in-
creases with the number of FlyBSs in the system. However,
this statement is not valid for the Exhaustive search. The
capacity gain introduced by the Exhaustive search compared
to the proposals almost does not change and even slightly
decreases with the raising number of FlyBSs. The slight
improvement in performance for our proposed solutions is
because the proposals prevent the BSs’ overloading and also
suppress an occurrence of the redundant handovers. These two
factors become critical in larger networks with a high number
of BSs.

4) Learning process: Figure 7 illustrates the learning
progress of the proposal after individual learning events, i.e.,
after each handover performed by the FlyBS. The figure
depicts the gain in the capacity of all UEs achieved by the

proposal with respect to the Adaptive CIO (subplot a) and
Only FlyBSs CIO (subplot b) algorithms for four FlyBSs. At
the beginning of the learning process, the gain of the proposed
algorithms compared to the Adaptive CIO and Only FlyBSs
CIO is rather small or even slightly negative (several percent)
in some steps. This is a result of the initial “random” learning
when (almost) no information that would guide the selection
of the CIO is available. However, after a short initial phase,
the gain becomes always non-negative. This initial phase, in
Figure 7 represented by red vertical lines, lasts only about 30
– 40 handovers.

The figure also illustrates fitting function for the gain with
respect to the Adaptive CIO (Figure 7a) and Only FlyBSs
CIO (Figure 7b) algorithms. The fitting functions in Figure 7
show that the Proposal AC converges faster than the Proposal
QL and the Proposal AQL and reaches convergence after
approximately 100 handovers, while the Proposal QL reaches
convergence after 160 handovers and the Proposal AQL
converges after approximately 130 handovers. Note that the
convergence is depicted by blue vertical line in the figures. The
fast convergence of the actor-critic based approach is because
the actor-critic does not utilize the Q-table and circumvents
the long learning problems. The slower convergence of the
Proposal QL is due to the big Q-table, which requires more
time to fill and explore the whole table. For the similar reason,
the Proposal AQL with approximate Q-table converges faster
compared to the Proposal QL and converges slower compared
to the Proposal AC. Nevertheless, all proposals eventually
converge to similar capacity gain with a marginal difference
below 2%.

5) Handover failure and ping-pong ratios: Figure 8 depicts
the handover failure ratio HFR for the handovers of the FlyBSs
(subplot a) and for the handovers of the UEs (subplot b).
The proposed algorithm always reaches the lowest HFR for
the FlyBSs as well as for the UEs. The Adaptive CIO, Only
FlyBSs CIO, and Exhaustive search algorithms lead to HFR
equal to 4.3%, 2.7%, and 3.4%, respectively, for the FlyBSs
(Figure 8a). In contrast, our proposed algorithms achieve HFR
always below 0.5% for the FlyBSs, i.e., all proposals reduce
HFR more than five times with respect to the state-of-the-art
works. The difference in the achieved HFR for the FlyBSs
and the UEs by Proposal QL, Proposal AQL, and Proposal
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(a) (b)
Fig. 7. Learning progress represented by gain in capacity over number of handovers performed by four FlyBSs for creq = 25 Mbps with respect to: (a)
Adaptive CIO; (b) Only FlyBSs CIO. Red vertical line corresponds to the point, after which the gain with respect to related works is always positive; blue
vertical line depicts convergence of the proposed algorithms.

(a) (b)
Fig. 8. Handover failure ratio for handovers of FlyBSs (a) and all UEs (b).

AC is below 0.03% and is negligible. The proposed algorithms
eliminate the handover failures of the FlyBSs caused by GBSs’
overloading by adjusting the CIO of the BSs.

The HFR of the UEs (Figure 8b) is always below 0.3%
for all compared algorithms. Still, all three variants of the
proposed algorithm reach a bit lower HFR than the related
state-of-the-art works. We observe that the HFR for the UEs
slightly decreases with an increasing number of the FlyBSs in
the network. The reason for this slight decrease in the HFR
with more FlyBSs is the higher number of BSs to which the
UEs can connect in case of a low signal quality from the
serving BS and by overall improvement in SINR in the system
leading to a lower probability of the handover failure due to
low SINR.

In Figure 9, we show the HPR of all algorithms for the
handovers performed by the FlyBSs (subplot a) and the
handovers performed by the UEs (subplot b). The HPR for
the FlyBSs achieved by the Exhaustive search, the state-of-
the-art Adaptive CIO, and our prior work Only FlyBSs CIO is
approximately 6.7%, 5%, and 3.9%, respectively. In contrast,
all three proposed algorithms significantly decrease the HPR
for the FlyBSs below 1% (Figure 9a), i.e., roughly seven-
, five-, and four- times compared to the Exhaustive search,
Adaptive CIO, and Only FlyBSs CIO algorithms, respectively.

The HPR for the UEs (Figure 9b) reached by the Adaptive CIO
and the Only FlyBSs CIO is above 4% while our Proposal QL,
Proposal AQL, and Proposal AC reduce the HPR of the UEs
below 1%, 1.5%, and 1%, respectively, i.e., roughly three to
four times. The proposed algorithm reduces the number of
performed handovers by preventing the BS’s overloading and
taking the handover cost into account.

V. CONCLUSIONS

In this paper, we have proposed a novel algorithm simul-
taneously managing the handover of both FlyBSs and UEs
to maximize the capacity of the UEs served by the FlyBSs
while taking the handover cost into account. The proposed
algorithm exploits three variants of reinforcement learning
to adjust CIO of all BSs (including GBSs and FlyBSs) for
each FlyBS and each UE according to the load of BSs and
the load generated by FlyBSs and UEs. The three variants
provide a trade-off between performance and requirements
related to a practical implementation. The first proposal is
based on a common tabular Q-learning and yields the highest
capacity close to the theoretical upper bound and reaches
also the lowest HPR and HFR out of all proposals. However,
this common approach also implies notable requirements on
computation and storage for the Q-table and the Q-table even
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(a) (b)
Fig. 9. Handover ping-pong ratio for: (a) FlyBSs; (b) all UEs.

significantly enlarges with the raising number of BSs in the
system resulting into a longer learning period. In order to solve
the problem of the large Q-table, we further propose a solution
based on the approximate Q-table, which limits the practical
implementation issues at a cost of a small decrease in the
capacity (few percent) and a small increase in both HPR and
HFR. Still, even the approximate Q-table can be limiting in
large scale mobile networks. Hence, we propose the actor-
critic deep reinforcement learning approach. The actor-critic-
based solution is seen as the most suitable for the practical
implementation, since it reaches performance close to the
common tabular Q-learning in all investigated metrics and,
at the same time, the actor-critic reduces the learning period
and completely avoids the practical implementation problems
with the Q-table size.

The results show that all proposed reinforcement learning
based approaches outperform the state-of-the-art solutions in
the UEs’ capacity by dozens of percent and, at the same time,
the proposed algorithms also reduce both HFR and HPR for
the FlyBSs as well as for the UEs multiple times and reduce
both metrics to a negligible level.
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