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Abstract—The latency associated with accessing data stored
on edge computing servers for vehicles encompasses both the
communication between a vehicle and a server as well as a
latency of a data storage system. To enable low-latency vehicular
services, an efficient resource management should consider the
communication as well as the storage I/O cache resource allocation
along with a data access pattern and a priority of individual
vehicular services. Therefore, we focus on a joint optimization
of communication and storage I/O cache resource allocation
for access to data of vehicular services hosted by the edge
computing servers. The proposed framework determines the
data placement for the services and allocates communication and
storage I/O cache resources to each service. The objective is to
minimize the overall latency experienced by vehicular services for
access to data. The edge computing platforms share storage and
communication resources among various vehicular services, each
having distinct priorities and data access rates or patterns. Hence,
to reflect different priorities of services in resource allocation,
our objective metric takes into account the service priority, data
access frequency, and latency. We propose a feasible solution
using dual relaxation considering both communication and storage
latencies. The proposed solution reduces the average latency of
vehicular services by up to 1.8x compared to the state-of-the-
art resource allocation method for vehicular edge computing.
Even more notable improvement is observed for high priority
vehicular services, where the proposal leads to 2.5x lower latency
compared to the state-of-the-art storage I/O cache architecture
for virtualized cloud services.

Index Terms—Vehicular Edge Computing, Latency, Communi-
cation, Storage, Mobile Edge Computing.

I. INTRODUCTION

The autonomous vehicles impose transmission of a high
volume of data among them-self and to/from an infrastructure of
the communication network. To deliver delay sensitive vehicular
services, low latency communication is required [1] together
with processing of vehicular services in edge computing servers
deployed close to the vehicles [2]. Apart from communication
and computing, also data storage and access to data stored in
edge computing servers should be optimized to guarantee a
high quality of vehicular services supported by Vehicular Edge
Computing (VEC) [3]–[5].
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The performance of storage is recognized as a key bot-
tleneck in VEC, since the current platforms fail to deliver
the performance required for the desired autonomous vehi-
cle’s applications. A survey on the characteristics of edge
computing applications [1] concludes that the autonomous
vehicles generate over 100 GB data per vehicle per day and,
thus, require a real-time connectivity with very low (sub-
millisecond) latency. Supporting the features, such as real-
time traffic monitoring, continuous sensing, or infotainment
applications in the autonomous vehicles, motivates the use of
vigorous data access/storage in VEC platforms [1], [6]–[8]
while the existing platforms fail to address such performance
requirements [1], [6]–[8]. Another key challenge is data
movement, i.e., migrating a large amount of data from the
storage of one edge computing server to another server for
VEC [5], [9], [10]. Such data migration mandates an efficient
management of both storage and memory resources. Previous
investigations on constraints of the autonomous vehicles also
conclude that both the computation and the storage are major
bottlenecks in applications such as localization, object detection,
and object tracking [5].

Another challenge in VEC is storage/communication re-
source allocation to the vehicular services with a wide range
of priorities. The safety- and time-critical services, such as
collision avoidance, have higher priority than the other services,
such as software update [1]. Hence, the data access latency
of such services should be taken into account and these
applications should be prioritized. The VEC platforms share
the storage subsystem among different vehicular applications
despite the priority and storage demands. Hence, under an
inefficient storage management, the data intensive applications,
such as map/software update or sensing data upload, can also
impact the storage performance of other applications, such as
collision avoidance, resulting in a large and unacceptable data
access latency for the safety-critical application.

The data access latency in VEC is a function of resources
allocated for storage Input/Output (I/O) caching and commu-
nication. A joint allocation of the storage I/O caching and
communication resources is, thus, crucial. However, due to very
different nature of both types of resources, such optimization
problem is Nondeterministic Polynomial-time (NP)-completed
under realistic assumptions. Therefore, finding solution for
such problem is complex if not impossible [11]. Note that the



storage I/O caching is different from the content caching [12],
[13] and optimization of the storage I/O cache reduces the data
access latency in a VEC regardless of the data content [4].

The main focus of works addressing the latency in VEC
platforms is minimization of communication, computation, and
network caching latencies. However, a considerable source of
latency, the storage latency, is not addressed in these works.
A group of previous works is concentrated on computation
offloading [14]–[23], but only considering the computation
processing using metrics such as Central Processing Unit
(CPU) cycles, while storage as a significant source of latency
is ignored.

Some other previous works concentrate on network caching
and storage allocation in vehicular edge computing [12], [13],
[24]. However, these works do not explore the storage access
latency and do not investigate a potential reduction in the
storage access latency via I/O caching optimization.

Data storage systems mainly rely on Hard Disk Drives
(HDDs) and low-end Solid-State Drives (SSDs) as the main
storage media to manage the storage services at a reasonable
cost. However, these storage media have a relatively high
latency. To provide the desired performance with a low latency,
an efficient and widely used approach is the I/O caching. In the
data storage system with I/O cache, the average storage latency
of each application is directly affected by the size of I/O cache
allocated to that application [25]–[29]. Hence, allocating the
I/O cache resources is the subject of many studies, which target
to reduce the storage latency in the edge and cloud computing
systems [25]–[29]. In [25], the I/O cache for virtualized
platforms is addressed, not considering the application priority.
This architecture is proposed for a single storage system
and is not suitable for multiple connected edge computing
servers. A cache policy for virtualized platforms specialized
for Virtual Desktop Infrastructures (VDI) and data warehousing
is proposed in [26]. Another I/O cache architecture is proposed
in [27] to address the demands of internet applications such
as web or file services. S-CAVE solution developed in [28]
is another I/O cache architecture that manages cache space
among multiple virtual machines in commercial hypervisors.
This method also relies on a single server and conclusions
delivered in the paper are valid for applications such as web
search or data warehousing. In [30], the authors propose an I/O
cache allocation method for commercial virtualized platforms,
relying on a single-server architecture. All these works are
focused on general data center applications and are not designed
for VEC platforms, hence, communication latency and resource
allocation are neglected.

These works also do not consider the priority of services,
which is important factor in VEC. We summarize the data
storage challenges in VEC platforms not addressed in the
previous works as follows: a) the latency of access to the storage
subsystem is considerable, seriously contributing the overall
latency of VEC services, while neglected in all previous works
focused on VEC platforms, b) the storage architecture should
be optimized for VEC applications while previous studies,
which investigate storage architecture focus only on general
data center applications, c) the previous studies neglect the
priority of services, which is critical for VEC applications, d)

both communication and storage latencies significantly impact
the overall services latency, but these two aspects are not jointly
addressed in the related works.

The storage I/O caching for the VEC platforms is investigated
in our prior work [4]. Nevertheless, this prior work does not
consider the communication latency and only targets the storage
latency. The idea of a joint optimization of both storage and
communication latencies is tackled in our another prior work
[31], where we provide an initial investigation of both latencies
and we demonstrate a significance of their joint optimization.
To our best knowledge, exploration of data access in VEC
platforms by jointly considering storage and communication
latency is not addressed in any other work.

Hence, in this paper, we target the problem of joint
optimization of the storage I/O cache and communication
resource allocation for data access of vehicular services, such
as collision avoidance, map/software download, or upload
of sensed data, hosted by the edge computing platforms.
The proposed algorithm allocates the unikernel to the edge
computing server (base station) and determines the I/O cache
size, bandwidth, and transmission power. To best of our
knowledge, this is the first work on joint optimization of storage
and communication latencies in edge computing platforms. The
contributions of this work is summarized as follows:
• We propose novel algorithm minimizing the latency of

access to data for vehicular services considering jointly
communication as well as storage aspects. The algorithm
places vehicular services to individual edge computing
servers and allocates storage and communication resources
for individual vehicular services. Moreover, service priority
and access frequency are considered in allocation of
storage and communication resources.

• Joint minimization of storage and communication latency
is NP-Complete problem. Hence, we derive sub-optimal
feasible solution using dual relaxation.

• Via simulations with realistic models, we demonstrate
the proposed algorithm significantly reduces the overall
latency of vehicular services stored in edge computing
servers with respect to state-of-the-art-works.

The rest of paper is organized as follows. Section II presents
the system model. In Section III, the problem addressed in this
paper is formulated. Section IV elaborates the proposed solution.
Then, in Section V, a performance evaluation setup is outlined
and simulation results are discussed. Finally, Section VI
concludes the paper.

II. SYSTEM MODEL

In this section, we first present a general system overview.
Afterwards, we elaborate models of the communication, storage,
and overall latency in respective subsections.

A. General System Overview

We assume system consisting of V vehicles connected to
K base stations. Each base station hosts one edge computing
server serving the vehicle(s), as shown in Fig. 1. Therefore,
there are K edge computing servers. Each vehicular service
offloaded into the edge computing server appears in a form



of unikernels [32]. The unikernel is a lightweight, standalone
machine image, used in the cloud computing environment due
to its ability to improve performance, enhance security, simplify
deployment, or large scalability. We consider a single unikernel
for each service of the vehicle. For different services, such as
for collision avoidance or map/software updates, each vehicle
can be allocated with multiple unikernels, each handling a
specific service. Considering multiple unikernels, each handling
a single vehicle service has many benefits including higher
security, more efficient resource allocation regarding the vehicle
demands and priority, and easier mobility management. At the
same time, each unikernel allocated for one vehicle is hosted in
one edge computing server. To consider the unikernel to server
allocation in the system model, we use the notation Uv,ki , which
represents the unikernel i from the edge computing server k
allocated to the vehicle v. We also consider that each unikernel
is served by only one edge computing server at a time. Hence,
by considering Nk as the number of unikernels hosted by the
edge computing server k, the total number of unikernels hosted
by all edge computing servers is U = ∑

K
k=1 Nk. Finally, we

define the association matrix A = {au,k}, where au,k ∈ {0,1}
and au,k = 1 indicates the association of the u-th unikernel to
the k-th edge computing server, i.e., placing the u-th unikernel
into the k-th edge computing server. As each base station
collocates one and only one edge computing server, matrix A
determines the unikernel to base station placement.

In each base station and edge computing server, a hypervisor
is responsible for monitoring of the services’ behavior in a
periodic manner, helping the base station and edge computing
server in allocation of the communication resources and
storage resources, respectively, to each unikernel. We define
a monitoring period as the period for which the hypervisor
monitors the services’ behavior and the resources are allocated
regarding the history of accesses in the previous monitoring
period. The resource allocation is unchanged during the
monitoring period and the allocation is revised at the end
of each period. The length of the monitoring period Γ is
a system model parameter. Γ is typically in order of few
hundred milliseconds, while smaller Γ is required when we
have fast changes in the workload behavior, i.e., workload
characteristics including frequency of accesses, request size,
access locality, and combination of read/write requests. The
impact of monitoring period is evaluated in our simulations.

In the proposed VEC storage environment, each unikernel
is characterized by three parameters:
• Overall latency of data request, Dv,ki , is defined as the time

between the data read/write request sent by the vehicle
and the response from the edge computing server received
by the vehicle. Dv,ki includes communication as well as
storage latencies.

• Frequency (number) of data requests, Fv,ki , is the number
of issued data storage accesses requests from the vehicle
v to the unikernel i of the server k per unit of time. As
the data accesses may be different in size, we consider
a unit data access size of ls bits and we convert the data
access with an arbitrary size into multiple accesses with
the size ls.

• Priority ρv,ki ∈ ⟨0,1⟩ is a static value indicating importance
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Fig. 1: Overview of the system model with unikernel i of edge
computing server k, Uv,ki associated to vehicle v (Vv).

of the service (application) executed by the unikernel i,
hosted by the server k, and allocated to the vehicle v. The
priority is reflected in the optimization of both storage
I/O cache and communication resources.

Table I summarizes the variables and parameters defined in
the systems model.

B. Communication

For the communication latency, downlink and uplink are
taken into account.

1) Uplink communication latency: DUL
v,ki

is defined as the
latency between the vehicle v and the base station with the
edge computing server k hosting the unikernel i of the vehicle
v:

DUL
v,ki

=
lUL

RUL
v,ki

(1)

where lUL is the size of uplink data (in bits) represented by
write data (lUL = ls) or read request (lUL = lr, where lr is the

TABLE I: System Model Parameters

Parameter Description
V No. of vehicles
Vv Vehicle v
K No. of base stations, no. of edge computing servers
BSk Base station k
U No. of unikernels
Uv,ki Unikernel i from edge computing server k, allocated to vehicle v
Nk No. of unikernels hosted by the edge computing server k
NV

v No. of unikernels per vehicle
Ek edge computing server k
Bk Bandwidth of base station k
Bki,v Bandwidth allocated to Uv,ki
BV

v Bandwidth of vehicle Vv
PT

k Transmission power of base station k
PT

ki ,v
Transmission power allocated to Uv,ki

PT
Vv

Transmission power of vehicle Vv
Qk I/O cache memory size of edge computing server k
Q j,k Size of I/O cache memory layer j of edge computing server k
Qi, j,k Size of I/O cache layer j allocated to Uv,ki
Dv,ki Overall latency of unikernel Uv,ki
Fv,ki Data access frequency of unikernel Uv,ki
ρv,ki Priority of unikernel Uv,ki
ηi,k(s) I/O cache hit ratio of Uv,ki for cache size s
Ψi,k(s) Stack distance histogram of Uv,ki at point s
∆i,k Maximum stack distance of Uv,ki
Γ Length of monitoring period



size of read request), and RUL
v,ki

is the uplink data rate over the
radio channel between the vehicle v and the base station k
hosting the unikernel i. The data rate RUL

v,ki
is defined as:

RUL
v,ki

= Bv,ki × log2(1+
PR

v,ki

σ + Ik
) (2)

where Bv,ki is the communication bandwidth between the
vehicle v and the base station k hosting the unikernel i
associated with the vehicle v, PR

v,ki
is the received signal power

at the base station k hosting the unikernel i for the vehicle v,
σ represents the thermal noise, and Ik is the interference to the
base station k imposed by other concurrent communications.

2) Downlink communication latency: DDL
ki,v is defined as the

latency between the base station k collocated with the edge
server with the unikernel i and the vehicle v served by the
unikernel i:

DDL
ki,v =

lDL

RDL
ki,v

(3)

where lDL is the size of downlink data (in bits) represented by
downloading data (lDL = ls ) or sending a write acknowledg-
ment by the unikernel (lDL = la, where la is the size of write
acknowledgment). When the write request is issued from the
vehicle to the base station, it is considered as “confirmed” by
the vehicle upon receiving a write acknowledgment, indicating
the data being received and stored on the VEC server. RDL

ki,v
is the downlink data rate between the base station k and the
vehicle v served by the unikernel i. RDL

ki,v is defined as:

RDL
ki,v = Bki,v× log2(1+

PR
Vki ,v

σ + Ik,v
) (4)

where Bki,v is the communication bandwidth between the base
station k and the vehicle v, PR

Vki ,v
is the power of the received

signal at the vehicle v from the base station k hosting the
unikernel i, and Ik,v is the interference from all base stations
(except the base station k) imposed to the vehicle v.

The communication power and bandwidth are allocated
proportionally to the number of hosted unikernels, as also
considered by previous works for the edge computing ap-
plications [33]–[35]. Hence, the bandwidth Bki,v allocated
for the communication between the base station k and the
vehicle v to handle the unikernel i is Bki,v = Bk/Nk, where
Bk is the bandwidth available at the base station k. In a
similar way, the transmission power PT

ki,v allocated for the
communication from the base station k to the vehicle v for
handling the unikernel i is calculated as PT

ki,v = PT
k /Nk, where

PT
k is the total transmission power of the base station k.

Similarly in each vehicle the bandwidth is Bv,ki = BV
v /NV

v
and the transmission power is PT

v,ki
= PT

Vv
/NV

v , where NV
v is

the number of unikernels per vehicle, BV
v is the bandwidth of

vehicle Vv, and PT
Vv

is the transmission power of vehicle Vv.
Note that in practical applications, e.g., in mobile networks,
the communication delay depends on modulation and coding
scheme, which is technology dependent. Since we target a
general and technology-independent solution, we stick to
commonly used modeling of communication latency in line
with related theoretical works [13], [16]–[18], [24], [36] and

we do not go into details of modulation and network coding
scheme.

C. Storage

Each edge computing server is equipped by a main storage
and I/O cache resources, both managed by a hypervisor. Due
to a relative affordability of the main storage compared to the
other system components, the system designers usually tend
to install a storage capacity considerably larger than what is
defined for the system mission. Hence, we can assume that
the size of the main storage resources demanded by the hosted
unikernels is always smaller than the main storage capacity
provisioned by the edge computing server. Therefore, this work
focuses on an efficient communication and I/O cache resource
management. Furthermore, we expect that storage I/O cache
is allocated to the unikernels from local resources of the host
server, like in [25], [30].

The main storage media is either mid-range SSD or HDD.
The storage I/O cache is assumed to be composed of three
layers of Dynamic Random-Access Memory (DRAM), Non-
Volatile Memory (NVM), and high-end SSD. Due to the volatile
nature of DRAM, the Read-Only policy [4] is conventionally
considered for DRAM cache to prevent data loss in case of
system failures. We consider the write-back policy [4], [37] for
both NVM and SSD cache due to its performance superiority
to the write-through policy. The rest of cache management
policies are captured from the best-practices of the commercial
I/O cache configurations and state of the art research projects,
including Least Recently Used (LRU) cache replacement policy
in all layers, exclusive management method in all cache layers,
and a promotion policy that promotes all missed cache requests
to DRAM cache [25], [30], [38]–[40]. We further assume that
the main storage latency Lm, is higher than the cache memory
latency Lc, as the media used in the cache memory (such as
DRAM, NVM, and high-end SSD) performs better than HDD
or mid-end SSD used in the main storage, in term of both
latency and Input/Output Per Second (IOPS), by orders of
magnitude [41], [42], hence:

Lc < Lm (5)

The storage access is represented by either read or write
requests. The write requests are written in the first cache
layer, since these have typically similar latency not influenced
by the I/O cache policy management [25], [30]. Hence, a
constant storage write latency of DS

Wv,ki
is considered for all

write requests in our model and we concentrate on optimizing
the storage latency of read requests, DS

Rki ,v
, using an efficient

I/O cache resource allocation.
The average latency of storage read is a function of the

cache hit ratio, the latency of cache memory, and the latency
of main storage [4]. For the unikernel i serving the vehicle
v and hosted by the edge server k considering a single-layer
cache memory (extendable to multi-layer cache [4], [43]), the
average latency of the storage read is:

DS
Rki,v

= ηi,k(Qi, j,k)×Lc +(1−ηi,k(Qi, j,k))×Lm (6)



where ηi,k(Qi, j,k) is the hit ratio of cache memory with a size
Qi, j,k for the unikernel i hosted by the server k.

We use Hit Ratio Curves (HRC) [44] to calculate the cache
hit ratio η . Using stack distance analysis, HRC plots the hit
ratio as a function of the cache size. A memory access to the
address a is of a stack distance s if the number of s distinct
addresses are accessed since the previous access to the address
a. In the LRU replacement policy, the cache of size s+1 has
a hit for all accesses with the stack distance s and lower. Let
Ψi,k be the stack distance histogram for individual memory
addresses of Uv,ki , then the Cumulative Distribution Function
(CDF) of Ψi,k at the point Qi, j,k−1 gives ηi,k(Qi, j,k) is:

ηi,k(Qi, j,k) =
∑

Qi, j,k−1
s=0 Ψi,k(s)

Θ
(7)

where Θ is the total number of storage accesses. If we define
∆i,k as the maximum stack distance of the unikernel i at the
edge computing server k, a cache size of s = ∆i,k +1 has the
the hit ratio η = 1 and is known as the ideal cache size. Note
that the HRC is constructed only once in each monitoring
period. Like in conveniently considered practical cases and in
mainstream applications, we also assume that the hit ratio η

is a concave function of the cache size (Q) if the optimum
cache replacement policy, such as LRU, is employed [45].
Hence, the stack distance histogram Ψ is a monotonically non-
increasing function of the cache size Q. The storage latency
is not only a function of I/O cache size, but the waiting
time also plays a role when a burst of storage requests is
received. However, the I/O cache size is highly regarded as the
most important factor affecting the average latency of the data
storage systems [26], [28], [46], [47]. Moreover, the high-end
SSDs/NVMs can handle multiple read/writes in parallel and
provide almost constant latency when IOPS is under a specific
threshold, allowing us to consider a constant latency for the
I/O cache and concentrate on the I/O cache size optimization.

D. Overall Latency

The overall latency of the read request is defined as the time
interval from sending the storage read request by the vehicle
(e.g., downloading the map or road traffic status) to receiving
data from the edge computing server by the vehicle. In the case
of write requests (e.g., uploading the sensing data or reporting
a collision incidence), the latency of storage request is the time
it takes from sending the storage write data by the vehicle to
receiving the write acknowledgment from the edge computing
server at the vehicle.

As shown in Fig. 2, the overall latency DRki ,v
of the storage

read request by the vehicle v for the unikernel i at the edge
computing server k is the sum of the uplink communication
latency DUL

v,ki
of the read request, the storage read latency DS

Rki ,v
,

and the downlink communication latency DDL
ki,v for receiving

the read data from the edge computing server by the vehicle .
The latency of the storage write request DWv,ki

from the vehicle
v for the unikernel i hosted at the edge computing server k is
defined as the sum of the uplink communication latency DUL

v,ki
for sending the write data, the storage write latency DS

Wv,ki
, and
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Fig. 2: Sequence of communication and storage latency upon
read and write requests issued from the vehicle to the base
station.

the downlink communication latency DDL
ki,v for receiving the

write acknowledgment by the vehicle.
The overall access latency Dv,ki for the vehicle v served by

the unikernel i hosted by the edge computing server k is:

Dv,ki = γv,ki ×DRki,v
+(1− γv,ki)×DWv,ki

(8)

where γv,ki and 1− γv,ki are the probabilities of read and
write requests, respectively, generated by the vehicle v to the
unikernel i hosted by the edge computing server k.

E. Handover Latency

When the vehicle moves to another base station, the allocated
unikernel might be migrated to the new base station from the
previous one depending on an applied mobility management
algorithm. To reflect this aspect in our work, the migration
penalty should be taken into account. To consider the effect of
the migration process on the latency, we include the unikernel
migration latency in the communication cost function. We
assume optic fiber links among the base stations and the model
of the migration latency is a function of the amount of migrated
data, data transmission rate over the optic fiber link, and the
distance between two base stations:

DM
k′,k = kdisp×

d′k′,k
ϒ

+
lM
R f

(9)

where lM is the size of the unikernel which should be migrated
(in bits), d′k′,k is the distance between the source (k′) and
destination (k) base stations, R f is the data transmission rate of
the fiber-optic channel in bits per second, kdisp is the constant
that accounts for the specific dispersion characteristics of the
fiber, and ϒ is the speed of light in the fiber (approximately
2/3 the speed of light in the vacuum [48]).

III. PROBLEM FORMULATION

In this section, we present the targeted problem of the
minimization of the overall latency of services provided to
vehicles considering both communication and storage aspects.
The objective metric should take all three unikernel charac-
teristics we concern about, i.e., priority of the application ρ ,
frequency of the application data requests F , and latency D,
into account (see Section II-A). The objective metric is defined
as the multiplication of these three characteristic, ρ×F×D.



We consider the product of these three characteristics in our
objective metric, so that all parameters directly impact the
objective metric. Out of these three parameters, the unikernel
priority and the unikernel data access rate are determined
and are not affected by our design criteria. However, the
communication and storage latencies are impacted by our
design criteria and directly impact the objective metric. Hence,
we discuss how each parameter affects our objective. We also
elaborate the impact of the design criteria on the storage
and communication latencies, and consequently, the objective
metric.
Unikernel priority, ρ: The unikernel with a higher priority
has a higher impact on the objective metric. Hence, if two
unikernels have the same data access rate but different priorities,
improving the latency of the higher priority unikernel results in
a more notable improvement in the objective metric. This way,
the proposed solution provides a lower latency to high-priority
services.
Unikernel data access rate, F: The unikernel with a higher
data access rate has a higher impact on the objective metric.
Hence, if two unikernels have the same priority but different
data access rates, improving the latency of the unikernel with
higher access rate results in a more notable improvement in the
objective metric. This way, the proposed solution provides a
lower latency to the high-access rate services. The motivation
for an inclusion of F in our objective metric is that by omitting
F , we may allocate a relatively large amount of resources to the
unikernel that has a low number of data accesses. This unfair
resource allocation would result in a performance imbalance
between the two unikernels with the same priority. For example,
consider the unikernels A and B have the same priority. If the
frequency of the unikernel B is 1000 times higher than the
frequency of A (while the rest of parameters are the same), in
the case of omitting F , we would allocate the same amount
of resources to both A and B. Then, the unikernel A would
significantly outperform B in terms of the overall latency of
accessing data, as well as the latency of accessing a single
request, since the unikernel A would be granted with the same
amount of resources as B to respond only 1 request instead of
1000 requests responded by the unikernel B.
Unikernel overall data access latency, D: Defined as the time
between the data read/write request sent by the vehicle and the
response from the serving unikernel received by the vehicle,
the overall data access latency is modeled as the aggregation
of communication and storage latency. Hence, by reducing the
latency, we directly reduce the objective metric. This way, the
resource allocation resulting in a lower latency is encouraged.

In the following, we describe how each design criteria
impacts the communication and storage latencies:
• Storage Latency: The storage latency is impacted by the

cache hit ratio and the read/write ratio of the unikernel
workload. The read/write ratio is determined and is not
impacted by our design criteria. However, the cache hit
ratio is impacted by the allocated cache size, which is the
design criteria in our proposal, as indicated in the system
model.

• Communication Latency: Communication latency is
impacted by the association of the unikernels (vehicles)

to the base stations (edge computing servers). This asso-
ciation impacts the communication latency in two ways:
1) Allocating the unikernel to a far base station results in
a lower data transmission rate under the same bandwidth,
transmission power, and noise conditions. 2) Sharing the
communication resources (bandwidth and transmission
power) of the base station between a larger number of
unikernels results in a lower share of bandwidth and
transmission power allocated to each unikernel, resulting
in a lower data transmission rate under the same distance
and noise conditions.

To reflect all these aspects, the problem is formulated as:

min
K

∑
k=1

Nk

∑
i=1

ρv,ki ×Fv,ki ×Dv,ki (10)

s.t.
Nk

∑
i=1

Qi, j,k ≤ Q j,k, ∀k ∈ ⟨1,K⟩ ,∀ j ∈ ⟨1,β ⟩ (a)
β

∑
j=1

Qi, j,k ≤ ∆i,k +1, ∀k ∈ ⟨1,K⟩ ,∀i ∈ ⟨1,Nk⟩ (b)

where Nk is the number of unikernels in the edge computing
server k, β is the number of cache layers, and Q j,k is the size
of the cache memory layer j in the edge computing server k.

The constraint (a) in (10) limits the the allocated cache
memory from the layer j of the edge computing server k to
the size of the cache memory installed in the edge computing
server k. The constraint (b) guarantees the aggregation of cache
space allocated to the unikernel i from different cache layers is
within the limit implied by the ideal cache space determined by
the maximum stack distance, ∆i,k. Potential constraints related
to the communication bandwidth and power are guaranteed to
be satisfied regarding the system model.

IV. PROPOSED SOLUTION

In this section, we propose a solution addressing the
association of unikernels to the edge computing servers, as
well as I/O cache size allocation.

A. General Principles of the Solution

A joint optimization of cache size and association of
unikernels to the edge computing servers, as defined by matrix
A (Section II-A), is challenging mainly due to the following
facts: i) the objective is non-convex with respect to cache
size, according to (7), and ii) the discrete nature of the
association A (unikernel to edge computing server) makes the
solution non-tractable. To tackle this, we propose a sub-optimal
solution using dual relaxation. In particular, we first determine
placement of the unikernels to edge computing servers A,
resulting to minimum communication objective metric, i.e., the
minimum objective metric while ignoring the storage latency
and only considering the communication latency, as presented
in Section IV-B.

After determining the placement of the unikernels to edge
computing servers A, we find the efficient I/O cache size
allocated to each unikernel in Section IV-C. To this end, we
first relax the cache size constraint on each server (constraint
(a) in (10)) and replace it with a constraint on the overall
cache size allocated from all edge computing servers. In the



relaxed problem, the cache allocation is always possible from
the edge computing server assigned by matrix A, resulting to
the minimum communication objective metric. For this relaxed
problem, we propose the solution determining the optimal
I/O cache size allocated to each unikernel, minimizing both
communication and storage objective metrics.

The optimum cache size allocation in the relaxed problem
can, however, result to a possibly non-feasible solution to
the main problem (10), as the cache size constraint (a) in
(10) may be violated in some edge computing servers, as we
discuss in Section IV-D. We show the aggregation of over-
allocated cache in violated servers is equal to the aggregation
of free cache space in the rest of servers. Finally, we propose
a direct heuristic algorithm to achieve a feasible, but sub-
optimal allocation. This algorithm replaces some services from
the violated edge computing servers into the edge computing
servers with free I/O cache space, if this replacement improves
the objective metric.

B. Unikernel Placement Problem

In this section, we find a placement of unikernels to edge
computing server (collocated with base stations) resulting
to the minimum communication objective metric. As the
communication resources are managed by the base station
collocating the edge computing server and regarding the system
model, each base station collocates one and only one server, the
unikernel to edge computing server association is determined
by the unikernel to base station association. Regarding the
system model, the storage latency DS

v,ki
is only a function of

cache size. Hence, we remove the storage latency from the
objective metric in (10) and only keep the communication
latency. Hence, the goal is to find a solution to the following
problem:

min
K

∑
k=1

Nk

∑
i=1

ρv,ki×

(Fv,ki ×
l

Bk
Nk
× log2(1+

PT
k

Nk
( λ

4πdi,k
)2

N+I )

+ kdisp×
d′k′,k

ϒ
+

lM
R f

) (11)

The primary placement problem is a weighted bipartite graph
matching in the unikernels part, as shown in Fig. 3. To solve
such problem, we propose the solution shown in Algorithm 1.

Algorithm 1 Unikernel placement
1: for i← 1 to U do
2: for j← 1 to U

K do
3: for k← 1 to K do
4: temp[i][( j−1)×K + k] =

5: ρi×Fi× l

B
U
K
×log2(1+

PT
U
K

( λ
4πdi,k

)2

N+I )

+ kdisp×
d′k′ ,k

ϒ
+ lM

R f
)

6: end for
7: end for
8: end for
9: Hungarian (temp)
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Fig. 3: Cache placement problem as a weighted bipartite graph,
matching in the unikernels part.

In the proposed algorithm, we turn the graph shown in Fig. 3
into a bipartite graph with the number of U vertices in each
part, recognized as a Balanced Assignment problem. To this
end, in the bipartite graph of Fig. 3, we repeat each base station
U
K times (line 2), and construct the weight matrix temp for the
new bipartite graph with the number of U vertices in each part.
The weight of each edge of the graph is calculated considering
the communication objective metric (line 4). Finally, using
Hungarian algorithm, we find the perfect matching of unikernels
Utemp to the base stations K, resulting in the minimum weight.
This algorithm allocates the same number of unikernels (U

K )
to all base stations.

C. Constraints Relaxation and optimum cache allocation

In the previous section, the solution for the unikernel to
base station placement, represented by matrix A, is proposed.
In this section, we propose an algorithm for cache size
allocation to each unikernel. As the unikernel to base station
placement is already done by considering the communication
objective metric, we remove the communication latency from
the objective metric (10). To solve the problem, we first relax
the cache size constraint on each edge computing server,
assuming the efficient cache size can be allocated from any
edge computing server, as far as the overall allocated cache
does not exceed the aggregated cache sizes available on the
edge computing servers. This relaxation helps us to find the
optimal I/O cache size for the optimal unikernel to base station
placement, resulting a lower bound for the main problem
(10). In the relaxed problem, we find the optimal cache size
considering the constraint limiting the total cache size allocated
to the unikernels to the aggregation of the cache space installed
throughout the edge computing servers, i.e., assuming:

U

∑
i=1

QU
i =

K

∑
k=1

Qk (12)

where QU
i is the cache size allocated to the unikernel i. This

relaxation allows us to replace the constraint (a) in (10) with
∑

K
k=1 ∑

Nk
i=1 Qi, j,k ≤ ∑

K
k=1 Q j,k. As such, the cache allocation is

always possible from the edge computing server whose base
station is determined by matrix A, resulting to the minimum
communication objective metric. The relaxed problem is then



formulated as:

min
K

∑
k=1

Nk

∑
i=1

ρv,ki ×Fv,ki ×Dv,ki (13)

s.t.
K

∑
k=1

Nk

∑
i=1

Qi, j,k ≤
K

∑
k=1

Q j,k, ∀ j ∈ ⟨1,β ⟩ (a)

β

∑
j=1

Qi, j,k ≤ ∆i,k +1, ∀k ∈ ⟨1,K⟩ ,∀i ∈ ⟨1,Nk⟩ (b)

Proposition 1. The optimal solution of (13) is a lower bound
to the optimal solution to (10).

Proof. Suppose m is the optimal solution to the main problem
(10). Hence, m satisfies the constraint (a) in (10). By aggre-
gating the constraint (a) in (10) for different edge computing
servers (different k values), we obtain the constraint (a) in
(13). Hence, m is the feasible solution to (13). Consider m′

is the optimal solution to (13). As m′ is the lower bound to
all feasible solutions to the problem (13), m′ is also the lower
bound to m, i.e., to the optimal solution to (10).

In Algorithm 2, the cache allocation is optimized for the
fixed unikernel to base station placement, already determined
by Algorithm 1. We consider zero cache allocation for the
initial state (line 1 and line 2) and we allocate the cache
chunks one-by-one until all chunks are allocated (line 4 to
line 10). Per iteration of the while loop (line 4), we allocate
a single cache chunk. To this end, we find the unikernel i
with the highest objective achievement, αi = ρi×Fi×Ψi(Qi),
defined as an increase in the objective metric when allocating
one extra cache chunk to the unikernel (line 5). Let Qi be the
current number of cache chunks allocated to the unikernel i
and Ψi(Qi) be the stack distance histogram of i at the point
Qi. Regarding the definition of the stack distance, Ψi(Qi) is
an increase in the hit ratio caused by the cache size increase
from Qi to Qi +1. For example, when the cache size increases
from 0 to 1, the hit ratio increases by Ψi(0). Let ηi(Qi) be
the current hit ratio of the unikernel i and ηi(Qi +1) be the
hit ratio of i after allocating one extra cache chunk to it; then,
we have:

ηi(Qi +1) = ηi(Qi)+Ψi(Qi) (14)

We allocate one cache chunk from the edge computing server
e determined by matrix A to the unikernel i with the maximum
objective achievement (line 5). Afterwards, we increase Qi,e
(representing the number of cache chunks allocated from

Algorithm 2 Optimum solution to the relaxed problem (13)
1: for i← 1 to U do
2: QU

i = 0
3: end for
4: while ∑

U
j=1 QU

j ≤ ∑
K
k=1 QE

k do
5: i = max(ρr×Fr×Ψr(QU

r )),r ∈ ⟨1,U⟩
6: if QU

i < ∆i +1 then
7: e = min(A(r)),k ∈ ⟨1,K⟩
8: Qr,e = Qr,e +1
9: QU

r = QU
r +1

10: end while

the edge computing server e to the unikernel i) and QU
i

(representing the number of chunks allocated to the unikernel
i) to track the number of cache chunks allocated to each
unikernel (line 8 and line 9), As we assume allocating cache to
the unikernel only from one edge computing server, QU

i = Qi,e.

Proposition 2. The cache chunk assignment following the
proposed algorithm is optimal.

Proof. Please see Appendix.

D. Derive a feasible solution

Due to the previous relaxation, the cache size constraint
can be violated in some edge computing servers (due to cache
space over-allocation), while some edge computing servers have
free unallocated cache space. As the previous cache allocation
problem assumes the overall cache allocated to the unikernels
is equal to the overall cache installed on the edge computing
servers, asserted in (12), the aggregation of over-allocated cache
space (the cache space allocated in an edge computing server
over its installed cache size) is equal to the aggregation of
unallocated cache space in the rest of edge computing servers.

To derive a feasible cache allocation with the constraint
(a) in (10), we define the Replacement Cost Coefficient of
the unikernel i, θi = Fi × Pi, as the product of the access
frequency and priority of the unikernel i and we start replacing
the unikernels with smallest θ to the edge computing server
with free cache space, until the cash size constraint violation
is removed. To this end, using exhaustive search, we find
the edge computing server with free cache space resulting
to the maximum improvement in the objective metric. With
the unikernel replacement, the number of unikernels in the
source base station e1 and destination base stations e2 changes.
Regarding the equal splitting of communication bandwidth
and power in the system model, an update in the number
of unikernels in each base station changes the bandwidth
and power allocation, considered in our analysis. Replacing
unikernel u1 with the smallest θ from server e1 to server e2 is
taken only if it improves the objective metric. In case no server
e found that replacement of unikernel u1 from e1 to e improves
the objective metric, we fix the current unikernel placement
in server e1 and stop replacement. However, in this case the
cache size constraint is still violated in server e1. To remove
this violation, we reallocate the I/O cache resources of server
e1 to the unikernels placed in server e1, using Algorithm 2.

In practice, there is a possibility of internal fragmentation
after running the re-placement algorithm. The internal frag-
mentation is understood as the free cache space in the edge
computing server that is too small be allocated to any unikernel
in the edge computing servers with an over-allocated cache
space. As an example shown in Figure 4, suppose we have the
edge computing server e1 with 10 over-allocated cache chunks,
while the edge computing servers e2 and e3 have 8 and 2 free
cache chunks, respectively. Suppose that the unikernel u1 of
e1 with the optimum cache size of 9, has the smallest θ . The
algorithm starts re-placing the unikernels from the one with
the smallest θ , i.e., u1 in this example. However, the algorithm
fails to finish the replacement of remaining unikernels in this
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Fig. 4: Internal fragmentation problem in cache placement

example, since u1 cannot be allocated to either of e2 and e3. In
this case, we take one of two following decisions that results
in a smaller objective metric value: a) re-place u1 to the edge
computing server with the largest free cache space, i.e., to e2 in
our example, and reallocate the I/O cache resources of server
e2 to the unikernels placed in server e2, using Algorithm 2, or
b) keep u1 in the edge computing server where it is already
placed, i.e., e1 in the example, and reallocate the I/O cache
resources of server e1 to the unikernels placed in server e1,
using Algorithm 2.

V. PERFORMANCE ANALYSIS

In this section, we present simulation setup and the perfor-
mance of the proposed framework in terms of average latency.

A. Simulation Setup

Fig. 5 shows the overview of our experiment flow. To
evaluate the proposed framework, we post-processes the real
block-layer traces of the edge computing server serving the
autonomous vehicles. To model vehicle’s movement, we capture
vehicle trajectory from highD dataset [49] and we use the whole
traffic data of highD dataset (16.5 hours) with 1/25 second
timescale.

We define four vehicular services including collision avoid-
ance, sensing data upload, map/update download, and other
general type of services described as follows (and also detailed
in Table II):
• Collision avoidance workload is considered as a high-

priority and real-time service. This workload has com-
bination of small (32 kb) read/writes (70%/30%) with
relatively high temporal locality (achieved by Zipf 1.2
distribution).

• Sensing data upload from the autonomous vehicle to
the edge computing server. This service is of a normal
(medium) priority and generates sequential big (32768 kb)
writes in the edge computing server.

• Map and software update sent from the edge computing
server to the autonomous vehicles. Also, this service is
of a normal priority, but generates sequential big (32768
kb) read requests in the edge computing server.

• Other services for autonomous vehicles with normal
priority and with random distribution of accesses with
high locality (achieved by Zipf 1.2 distribution).

We conduct the simulations with five representative work-
loads of collision avoidance (referred as Collision in the results),
sensing data upload (Sensing), map and software update
(Update), other services for autonomous vehicles (Other), and
a mix of all services with equal probability of each out of four
basic service types (Mix). The basic services are generated using
Flexible I/O (FIO) benchmarking tool [50]. The storage block

TABLE II: Characteristics of autonomous vehicle service types

Collision
Avoidance

Sensing
Data Upload

Map/Software
Update Other

Read/Write % 70/30 0/100 100/0 70/30
Request Size 32 kb 32768 kb 32768 kb 32 kb

Access Pattern Zipf 1.2 Sequential Sequential Zipf 1.2
Priority Real-time Normal Normal Normal

• 𝑆𝑦𝑛𝑡ℎ𝑒𝑠𝑖𝑧𝑒
𝑉𝑒ℎ𝑖𝑐𝑙𝑒 𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝑠 

• 𝑈𝑠𝑒 𝐹𝐼𝑂

   𝐿𝑖𝑛𝑢𝑥 
  𝑆𝑒𝑟𝑣𝑒𝑟     𝐵𝑙𝑘𝑡𝑟𝑎𝑐𝑒

    𝐷𝑒𝑣𝑒𝑙𝑜𝑝𝑒𝑑 
     𝑖𝑛 𝑃𝑦𝑡ℎ𝑜𝑛

𝑺𝒊𝒎𝒖𝒍𝒂𝒕𝒆 
𝑪𝒐𝒎𝒎. & 
𝑺𝒕𝒐𝒓𝒂𝒈𝒆

𝑪𝒐𝒍𝒍𝒆𝒄𝒕 
𝑺𝒕𝒐𝒓𝒂𝒈𝒆 
𝑻𝒓𝒂𝒄𝒆𝒔

𝑹𝒖𝒏𝒏𝒊𝒏𝒈 
𝑾𝒐𝒓𝒌𝒍𝒐𝒂𝒅𝒔

𝑮𝒆𝒏𝒆𝒓𝒂𝒕𝒆 
𝑾𝒐𝒓𝒌𝒍𝒐𝒂𝒅𝒔

Fig. 5: Experiment flow

accesses for each service are collected using Linux blktrace
tool [51].

We simulate the vehicular edge computing with the system
model parameters summarized in Table III. We consider each
edge computing server is collocated with one base station
deployed along the road with equal inter-site distance of 1000 m
To model vehicle’s movement, we capture highway tracks data
from highD dataset [49]. We also consider the communication
bandwidth and power are allocated by the transmitting device
proportionally to the number of unikernels hosted by the edge
computing server of the base station serving the vehicle, as
detailed in the system model, considering the carried frequency
of 2.6GHz. We simulate the storage subsystem considering
a 3-level cache which consists of DRAM, NVM, and SSD.
The latency of each cache layer, as well as main storage
(HDD) is summarized in Table III. We consider a high priority
for collision avoidance services by setting ρ = 1 and normal
priority for the rest of vehicular services with ρ = 0.5. We
report the average latency, defined as the aggregation of
communication and storage latency (8).

As no previous work considers both communication and
storage latency together, we compare the proposed framework
with three state-of-the-art platforms, including two I/O cache
architectures for edge and virtualized platforms, Priority-Aware
Block Data Storage Architecture for Edge Cloud Serving
Autonomous Vehicles (PADSA) [4] and Efficient Two-level I/O
Caching Architecture for Virtualized Platforms (ETICA) [25],
and a workload scheduling platform for VEC which consid-
ers the communication and computation latencies, Workload
Scheduling in Vehicular Networks With Edge Cloud Capabilities
(WSVN) [36]. All three previous works consider a single
edge computing server, while PADSA and ETICA do not
take the communication latency into account. To be able

TABLE III: Simulation Parameter Values
Notation Parameter Value

K Number of edge computing servers 10
U Number of unikernels (4 unikernels per vehicle) 1000

Lc (DRAM) I/O cache memory latency 7.9 ns
Lc (NVM) I/O cache memory latency 70 ns
Lc (SSD) I/O cache memory latency 25 us

Lm Main storage latency 10 ms
PT Transmit power of edge computing server base station 46 dBm
PT

i Transmit power of vehicle 20 dBm
l Size of unit storage access 32 kb
σ Noise power -90 dBm
B Bandwidth of edge computing server base station 100 MHz
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Fig. 6: Aggregation of communication and storage latency for: a) Collision Avoidance, b) Sensing Data Upload, c) Map/Software
Update, d) Other, and e) Mix workloads.

to compare performance, we consider PADSA and ETICA
allocate unikernels to the edge computing server with free
cache space whose base station has the lowest distance from
the vehicle, assuming that the allocation is performed by order,
started from the unikernel 1 and finished with the unikernel
U . WSVN considers communication latency of request upload
and response download, as well as computation latency, but
no storage latency. To be able to compare performance,
we consider high-priority vehicle services (e.g., collision
avoidance) as what considered as Delay-Intolerant Task in
WSVN. We also consider each storage request in our system
model as a computation request in WSVN, by considering that
both data size (in bits) and computation requirement (CPU
cycles) in WSVN are proportional to the storage access size
in our system model.

Conducting Algorithm 1 is of time complexity O(U×K3) (U
for the main loop and K3 for the Hungarian algorithm), where
U is the number of unikernels and K is the number of base
stations. Constructing Algorithm 2 is of time complexity O(Q+
U×(R logZ)) where Q = ∑

K
k=1 Qk is the total number of cache

chunks in all edge computing servers, R is the total number of
storage requests (length of workload) in the previous monitoring
window, Z is the number of unique references (addresses) [44]
in the previous monitoring window, and R logZ is the time
complexity of constructing the stack distance histogram Ψ and
hit ratio curve η for each unikernel. Finally, deriving a feasible
solution after running Algorithm 1 and Algorithm 2 is of time
complexity O(U ×K). Hence, the whole solution is of time
complexity O(U× (K3 +R logZ)+Q)

B. Results

Fig. 6 compares the average latency of the proposed
framework with the state of the art works. We show the
average overall latency of all services, including both high-
priority and normal services. The proposal improves the average
latency compared to the state of the art works in all examined
workloads in order of 23%-80%, thanks to an efficient service
placement and considering the priority of services, reducing
both communication and storage latency. Note that PADSA
and ETICA perform the same in terms of communication
latency and their performance difference is due to the storage
latency. We observe the most notable latency improvement in
the Mix workload. This observation is justified by the fact that
the Mix workload has the combination of high-priority and
normal-priority services and benefits more from the proposed

0%

20%

40%

60%

80%

100%

Collision Sensing Update Other Mix

L
a
te

n
c
y
 (

%
)

Storage Communication

Fig. 7: Share of communication and storage in overall latency.

framework, which considers the priority of services in the
objective metric.

In Collision, Sensing, Update, and Other workloads, we only
have one type of vehicular service. Hence, both PADSA and
ETICA perform similar in terms of storage latency, as the
major benefit of PADSA over ETICA, which is considering
the service priority, does not show off when we have only
one service type. The performance superiority of the proposed
method in Collision, Sensing, Update, and Other workloads is
also described by the more efficient storage and communication
resource management, regardless of the priority of the services.
In Sensing and Update workloads, WSVN performs slightly
better than PADSA and ETICA. This observation is described
by the fact that Sensing and Update workloads have sequential
access pattern. Sequential workloads do not benefit I/O cache.
Hence, all requests of Sensing and Update workloads are
handled by accessing the main storage media, resulting the
similar storage performance for all examined methods. The
lower latency of the proposed method and WSVN compared
to PADSA and ETICA is due to the more efficient allocation
of communication resources.

Workload Collision and workload Other both have random
read/write access pattern. Hence, both benefit an efficient I/O
cache resource allocation which reduces the storage latency.
This fact describes the relatively high latency of WSVN, as
it has a high storage latency. The proposed method performs
similar to PADSA and ETICA in terms of storage latency
when we do not have services with different priority, while the
better latency of the proposed method in workload Collision
and Other is described by the more efficient communication
resource allocation, resulting to lower communication latency.

Fig. 7 shows the a share of the communication and storage
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Fig. 8: Number of accesses to the storage subsystem per second (the average of whole runtime) for: a) Collision Avoidance,
b) Sensing Data Upload, c) Map/Software Update, d) Other, and e) Mix workloads. The lower number shows better cache
performance.
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Fig. 9: Average cache hit ratio for: a) Collision Avoidance, b) Sensing Data Upload, c) Map/Software Update, d) Other, and e)
Mix workloads.

latencies in the overall latency for the proposed framework.
The figure shows the dominance of the communication latency
contributing to the overall latency with 46% to 82%. We observe
a relatively higher share of the communication latency for the
high-priority services, compared to the normal services (82%
vs 73%) in the Mix workload.

Fig. 8 shows the number of accesses to the storage subsystem,
as a metric demonstrating the efficiency of I/O cache mecha-
nism. The figure shows that the proposal reduces the number of
accesses to the storage subsystem by up to 25x. In Collision and
Other workloads, we have services with random access pattern.
Hence, an efficient I/O cache resource management can reduce
the number of storage subsystem accesses, which describes the
relatively lower number of storage subsystem accesses in the
proposed method, PADSA, and ETICA compared to WSVN.
Sensing and Update workloads, however, have sequential access
patterns with no temporal locality of accesses. Hence, the
I/O cache cannot reduce the number of storage subsystem
accesses. As a result, all examined methods have similar
number of storage subsystem accesses in the Sensing and
Update workloads. The Mix workload is the most challenging
in terms of resources management, as it has a combination of
high-priority and normal-priority services. We observe that the
proposed method and PADSA perform better than ETICA, as
ETICA does not consider the service priority in allocating I/O
cache resources.

Fig. 9 compares the cache hit ratio of the proposal with
the state-of-the-art works. The higher cache hit ratio results
in a lower average storage latency. As the figure shows, the
proposal outperforms all state-of-the-art-works. While PADSA
and ETICA reaches similar cache hit ratio to our proposal
(improvement by our proposal in order of few percent), WSVN

leads to very low cache hit ratio in most of the workloads except
the workloads b and c representing sensing data upload and
map/software update, which are sequential write and sequential
read, respectively, and do not benefit from the I/O cache
memory. The figure shows that the proposal increases the
average cache hit ratio by up to 4.4x.

Fig. 10 shows the impact of monitoring period on the
average latency for monitoring period Γ 1 ms to 100,000
ms. If the monitoring period is too large, major changes in
the workload behavior can take place without updating the
allocated resources, resulting in an inefficient resource usage.
The reason is that when the monitoring period is too large, the
vehicle moves too far from the associated base station during
the monitoring period, resulting in a low transmission rate.
Fig. 10 shows a significant increase in the average latency
when the monitoring period is beyond 1000 ms, while we
do not observe a meaningful improvement in latency when
monitoring period is lower than 100 ms. The results also show
24% share of storage in total latency for the Mix workload for
monitoring period of 100 ms. The share of storage latency does
not noticeably change when decreasing the monitoring period to
1 ms. However, when increasing the monitoring period to 10000
and 100000 ms, the share of storage latency in total latency
decreases to 22% and 7%, respectively. Similarly in the rest of
workloads, when decreasing the monitoring period to 1 ms, we
observe no notable change in the share of the storage latency
in the total latency. However, when increasing the monitoring
period to 100000 ms, the share of the storage latency in the total
latency decreases to 13%, 12%, 10%, and 14% for Collision
avoidance, Sensing data upload, Map/software download, and
Other workload, respectively.

To demonstrate the scalability of our proposal, Fig. 11 shows
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Fig. 10: Impact of monitoring period Γ on performance for: a) Collision Avoidance, b) Sensing Data Upload, c) Map/Software
Update, d) Other, and e) Mix workloads.
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Fig. 11: Execution time of the proposed algorithm for different
number of unikernels and edge computing servers.

the execution time of the proposed algorithm for different
number of unikernels and edge computing servers in terms
of the number of CPU cycles. As the figure shows, when
increasing the number of unikernels by 10X (from 1000 to
10,000), the execution cycles increase almost linearly (from
11,500,000 to 318,000,000). By increasing the number of edge
computing servers from 10 to 100, however, the execution cy-
cles increase by three orders of magnitude, from 11,500,000 to
18,018,900,000. Finally, by increasing the number of unikernels
to 100,000, however, the execution cycles increase to 2.3×1012.
We need to mention that the execution cycles is calculated by
a single-thread implementation of the algorithm on a single
machine, while the potential performance improvements using
parallelism can be investigated in our future works.

Fig. 12 shows the performance gap between the optimal
solution, the proposed solution, and the state of the art works,
for the number of unikernels ranging from 4 to 32. We observe
the largest gap between the optimal and proposed solutions for
U=4 (11%), while for U=8, U=16, and U=32, the gap is 9%,
8%, and 9%, respectively. The storage latency gap between the
proposed and optimal solutions is 10%, 7%, 4%, and 4% for
U=4, U=8, U=16, and U=32, respectively. The large latency
gap for U=4 is due to the fact that the I/O cache hit ratio is
high when U=4 (91% and 90% in the optimal and proposed
solution, respectively), as the I/O cache is shared with relatively
low number of unikernels. Hence, the average storage latency

is relatively low (0.92 ms and 1.02 ms for the optimum and
proposed solutions, respectively). For such low storage latency
range, even a small improvement in the absolute cache hit
ratio results in a relatively large latency improvement due to a
notable gap between the main storage and I/O cache latency.
As the figure shows, the gap between the related state of the
art works and the optimum is way much higher and goes even
to hundreds of percent.

VI. CONCLUSION

In this paper, we have proposed a novel solution for
allocation of communication and I/O cache storage resources
in the VEC platforms. First, we provide a sub-optimal solution
using dual relaxation and we propose two algorithms for a
placement of the unikernels to the edge computing servers and
we find the optimum I/O cache size in the relaxed problem.
To minimize communication latency, we turn the primary
assignment problem in an unbalanced bipartite graph into
a balanced assignment problem solvable in polynomial time.
Finally, we propose a direct heuristic to remove the cache
size constraint violation in some edge computing servers. The
proposed framework reduces the average latency of all services
and the average latency of high-priority services by up to 1.8x
and 2.5x, respectively, compared to the state-of-the-art works.

In the future work, the impact of computing latency should
be taken into account for optimization.
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APPENDIX

In this Appendix, we provide a proof of Proposition 2.

Proof. We use mathematical induction. For the initial step
(i = 1), the optimal solution has a non-zero number of
cache chunks assigned to the unikernel with the maximum
objective achievement α from the edge computing server e
which base station has the highest channel quality. Proof
by contradiction. Suppose the unikernel r has the maximum
objective achievement and zero chunks are assigned to the
unikernel r from the edge computing server e in the optimal
solution m. Furthermore, suppose the unikernel j ( j ̸= r) has
at least one cache chunk from the server e in the solution m.
In the solution m, we get one cache chunk from j and assign
it to r, calling it m′. The objective metric in the solution m is:

m =
N

∑
k=1

Nk

∑
i=1,(i,k)/∈{(r,e),( j,e)}

ρv,ki ×Fv,ki ×Dv,ki (15)

+ρ j,e×Fj,e× (η j,e×Lc +(1−η j,e)×Lm +DC
j,e)

+ρr,e×Fr,e× (ηr,e×Lc +(1−ηr,e)×Lm +DC
r,e)

Regarding (14) and (15), the objective metric in m′ is:

m′ = m− (Lm−Lc)× (16)
(ρr,e×Fr,e×Ψr,e(Qr,e)−ρ j,e×Fj,e×Ψ j,e(Q j,e−1))

In (16), (Lm−Lc) is always positive regarding (5). Besides,
based on our assumption, unikernel r has the maximum
objective achievement α . Hence, considering Qr,e = 0, we
have:

ρ j,e×Fj,e×Ψ j,e(Q j,e−1)< ρr,e×Fr,e×Ψr,e(0) (17)

The second factor of A is also always positive. Accordingly,
m′ < m that contradicts the first assumption that m is the
optimum solution.

Next, assume that i cache chunks are assigned to the
unikernels following the proposed algorithm and all allocated
cache chunks appear in the optimal solution. Now, we prove this
assumption for the (i+1)-th cache chunk assignment. Suppose
the unikernel r has the maximum objective achievement in
the current allocation of i cache chunks, while the number of
cache chunks already allocated to r is Qr,e:

ρ j,k×Fj,k×Ψ j,k(Q j,k)≤ ρr,e×Fr,e×Ψr,e(Qr,e), (18)
∀k ∈ ⟨1,K⟩ ,∀ j ∈ ⟨1,Nk⟩

Claim: The optimal solution m allocates at least Qm
r,e =

Qr,e +1 cache chunks to unikernel r, hence, Qr,e < Qm
r,e, where

Qm
r,e is the number of cache chunks allocated to the unikernel

r in the optimal solution m.
Proof: Using contradiction, suppose that Qm

r,e ≤ Qr,e. Based
on our assumption, m contains all first i chunks assigned using
the firsts i iterations of the while loop (line 4) of Algorithm 2.
Hence, for all unikernel, the amount of the allocated cache in
m is greater or equal than that of the iteration i of the while
loop of Algorithm 2:

Q j,k ≤ Qm
j,k,∀k ∈ ⟨1,K⟩ ,∀ j ∈ ⟨1,Nk⟩ (19)

From (19) we have Qr,e ≤Qm
r,e, while from our first assump-

tion in the contradiction we have Qm
r,e≤Qr,e. Hence, Qr,e =Qm

r,e.
It means that no more cache chunks will be allocated to
unikernel r after the iteration i of Algorithm 2. So exists
unikernel j from edge computing server k, ( j,k) ̸= (r,e), which
cache size in the optimal solution m, Qm

j,k, is greater than its
size in the iteration i, Q j,k:

∃k ∈ ⟨1,K⟩ ,∃ j ∈ ⟨1,Nk⟩ ,( j,k) ̸= (r,e),Q j,k < Qm
j,k (20)

We define a feasible solution m′ as follows; In the optimal
solution m, we take one cache chunk from the unikernel j and
assign the cache chunk to the unikernel r, naming it solution
m′. Solution m′ is feasible, as it does not change the total
number of allocated cache resources. From (16), we have:

m′ = m− (Lm−Lc)× (21)
(ρr,e×Fr,e×Ψr,e(Qm

r,e)−ρ j,k×Fj,k×Ψ j,k(Qm
j,k−1))

In the following, we show that in (21), m is subtracted by
a non-negative value. In (21), (Lm− Lc) is always positive,
based on our assumption in (5). Based on our system model
assumption (Section II), the hit ratio η is a concave function
and Ψ is a monotonically non-increasing function of Q. Hence:

Ψ j,k(Q j,k +1)≤Ψ j,k(Q j,k),∀k ∈ ⟨1,K⟩ ,∀ j ∈ ⟨1,Nk⟩ (22)

From (20), we get Q j,k ≤ Qm
j,k− 1. Afterwards, from (18)

and (22), we obtain:

ρ j,k×Fj,k×Ψ j,k(Qm
j,k−1)≤ ρ j,k×Fj,k×Ψ j,k(Q j,k) (23)

≤ ρr,e×Fr,e×Ψr,e(Qr,e) = ρr,e×Fr,e×Ψr,e(Qm
r,e)
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Hence:

0≤ ρr,e×Fr,e×Ψr,e(Qm
r,e)−ρ j,k×Fj,k×Ψ j,k(Qm

j,k−1) (24)

which concludes that in (21), m is subtracted by a non-negative
value. Hence, m′ ≤ m. Based on our proof assumption, m
is the optimal solution resulting to the minimum objective
metric. Hence, m ≤ m′ and in conclusion, m = m′. Hence,
m is the optimal solution while it allocates Qr,e + 1 cache
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chunks to unikernel r. Hence, Qr,e < Qm
r,e which contradicts

our assumption that Qm
r,e ≤Qr,e. Hence the claim is proved and

the optimal solution m allocates at least Qm
r,e = Qr,e +1 cache

chunks to the unikernel r. As in the proposed algorithm the
i+1-th cache chunk is allocated to the unikernel r, we conclude
that following the proposed algorithm, all i+1 cache chunks
assigned to the unikernels appear in the optimal solution, and
the mathematical induction is proved for i+ 1. Hence, the
cache chunk assignment following Algorithm 2 is optimal.
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