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Abstract—This paper addresses the challenge of optimizing
communication, computation, and storage I/O caching in Vehic-
ular Edge Computing (VEC) platforms for autonomous vehicles.
The exponential data generated by the autonomous vehicles
demands low-latency connectivity with nearby edge servers.
However, the existing VEC platforms struggle to meet the
performance requirements, especially in real-time applications
like collision avoidance. This work proposes a novel algorithm
for joint allocation of computing resources, storage I/O cache,
and communication resources, considering the diverse prior-
ities and demands of key vehicular services. Our approach
integrates application-specific optimizations, prioritization, and
joint latency reduction considering communication, computation,
as well as storage. Accounting for distinct priorities and data
access characteristics of various vehicular services, our proposed
feasible solution, employing dual decomposition and Lagrangian
relaxation, significantly reduces service latency by up to 64%
compared to the current state-of-the-art resource allocation in
vehicular edge computing.

Index Terms—Vehicular Edge Computing, Latency, Commu-
nication, Computation, Storage, Mobile Edge Computing.

I. INTRODUCTION

Autonomous vehicles necessitate an exchange of a substan-
tial volume of data with a communication network infrastruc-
ture. To ensure prompt delivery of time-sensitive vehicular ser-
vices, it is imperative to employ low-latency communication,
processing, and data access/storage of vehicular services to
edge computing servers situated in a close proximity to the
vehicles [1]–[3].

The performance of storage poses a significant bottleneck
in VEC, as current VEC platforms struggle to meet the perfor-
mance requirements for applications in autonomous vehicles.
Autonomous vehicles generate hundreds of gigabytes of data
per vehicle per day, necessitating real-time connectivity with
a very low latency [1]. Meeting the demands of real-time
collision avoidance, continuous monitoring, or infotainment
applications in the autonomous vehicles requires a robust
data access and storage in the VEC, i.e., in the areas where
existing VEC platforms fall short [1], [2]. Constraints of the
autonomous vehicles also highlight computation and storage
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as major bottlenecks in applications like localization, object
detection, or object tracking [3].

In VEC, allocating computation, storage, and communica-
tion resources to vehicular services with varying priorities
poses a challenge. Safety- and time-critical services, such as
collision avoidance, take precedence over other services like
software updates [1]. Therefore, the request handling latency
for high-priority services should be considered, emphasizing
the need for prioritization. The VEC platforms share the
storage, computation, and communication resources among
different vehicular applications, irrespective of priority and
storage/computation/communication demands. Inefficient re-
source management can impact the performance of critical
applications due to the influence of data/processing-intensive
applications on overall performance. The request handling
latency in VEC is dependent on resources allocated for com-
putation, storage Input/Output (I/O) caching, and communi-
cation. Joint allocation of computation, storage I/O caching,
and communication resources is crucial, but solving this opti-
mization problem is complex, if not impossible, under realistic
assumptions [4].

Previous works on latency reduction in VEC mainly focus
on computation, communication, and network caching, over-
looking the access to storage. In a similar way, also works on
computation offloading often consider CPU cycles, but neglect
the access to storage, which is, however, a significant source of
latency [5]–[7]. Only two recent studies [2], [8] consider the
storage I/O cache latency alongside communication latency in
VEC. However, these works ignore the computation latency.

Data storage systems predominantly rely on Hard Disk
Drives (HDDs) and low-end Solid-State Drives (SSDs), which
have relatively high latency. To achieve a desired performance
with low latency, I/O caching is widely used. An efficient
allocation of the I/O cache resources is crucial for reducing
storage latency in edge and cloud computing systems [9],
[10]. However, existing works in this domain often neglect
application priority, focus on general data center applications,
and do not consider communication and computation aspects.
Priority considerations, application-specific optimizations, and
joint optimization of communication, computation, and storage
latencies are critical for the VEC, but these aspects are not
addressed in previous research works.

This paper focuses on the challenge of joint optimization
of communication, computation, and storage I/O caching re-



source allocation in VEC platforms for key vehicular services,
such as collision avoidance, map/software download, and
sensing data upload, with different priorities and computa-
tion/storage/communication demands. The major contributions
of this paper are summarized as follows.
• We propose an algorithm determining the placement of

computing resources (in a form of the unikernels) for
individual services and allocate the communication and
computing resources and I/O cache.

• To attain a computationally viable algorithm for the
resource allocation, we employ dual decomposition and
Lagrangian relaxation.

• We demonstrate a significant (up to 64%) reduction in
the latency of services compared to the current state-of-
the-art resource allocation in VEC in realistic scenarios.

The rest of paper is organized as follows. Section II intro-
duces the system model. Section III formulates the problem
tackled in this paper. The proposed solution is detailed in
Section IV. Following that, Section V outlines the setup
for performance evaluation and discusses simulation results.
Lastly, Section VI provides the concluding remarks for the
paper.

II. SYSTEM MODEL

In this section, we present the system model for VEC.
After presenting the high-level overview of the system, we
elaborate models of the communication, computation, and
storage subsystems.

A. System Model overview

Fig. 1 shows the overview of the system model. We assume
K VEC servers, individually collocated with K base stations
serving V vehicles. Each vehicle may require one or multiple
vehicular services, such as collision avoidance or sensing
data upload, and each vehicular service is handled by an
independent unikernel in the VEC server [11]. Like in typical
practical applications, we assume each unikernel is hosted at
just one server. We use the notation Uv,i for the unikernel
i which serves the vehicle v. To simplify the notation, but
without any impact on the proposed solution itself, we use
Ui to denote Uv,i, since we assume that all unikernels have
a unique index across all vehicles. The unikernel to server
placement is determined by the association matrix A = {au,k},
au,k ∈ {0,1} and au,k = 1 indicates the association of the
u-th (u ∈ ⟨1,U⟩) unikernel to the k-th (k ∈ ⟨1,K⟩) server.
Considering Nk as the number of unikernels hosted by the
server k, Nk = ∑

U
i=1 ai,k,∀k ∈ ⟨1,K⟩.

A hypervisor is responsible for allocation of the com-
munication, computation, and storage resources of the base
station and its collocated server to the hosted unikernels
regarding parameters such as unikernel priority, number of
requests, resource demands of unikernel requests, and the data
access pattern. The resource allocation is updated at regular
intervals, defined by Γ, while the efficient Γ depends on the
mobility/speed, as well as the rate of changes in the vehicular

service behavior. The smaller Γ is preferred when the service
behavior changes so fast or the vehicles move with high speed.

We assume each request issued by the vehicle is defined in
terms of communications, computing, and storage demands
and each of these corresponds to specific latency imposed
by communication, computing, and storage access, which
in turn is a function of resources allocated to address the
request. The overall latency is calculated as the aggregation of
communication, computation, and storage latency, as shown
in Fig. 1. Each VEC request is defined by the following
characteristics:
• Communication demand: Includes uplink request with

size lUL bits, sent from a vehicle to a base station,
requesting a specific service, and downlink response with
size lDL bits, sent from the base station to the vehicle.

• Computation demand: In terms of the number of
Floating-Point Operations (FLOP) lCP needed to accom-
plish the computation.

• Storage demand: Includes storage read data size lR and
storage write data size lW in bits.

• Priority A predefined value indicating the priority of the
request. This value, indicated by ρ ∈ ⟨0,1⟩, is usually a
function of the service type.

Each vehicular request, corresponding to a specific vehicular
service, carries the identifier of unikernel responsible for
handling the service. Hence, each request received in the base
station is handled by the specified unikernel. Each unikernel
handles and responds its received requests independently,
using the allocated resources. The base station allocates the
communication, computation, and storage resources to indi-
vidual unikernels, aiming to minimize/maximize an objective
metric which is a combination of the following criteria:

1) Average latency per request: Average latency Dv,ki per
request is the average time from issuing the request by the
vehicle to receiving the response, calculated as the aggrega-
tion of average communication latency, average computation
latency, and average storage latency.

2) Average priority per request: ρi ∈ ⟨0,1⟩ indicates the
average priority of requests handled by the unikernel i.

3) Number of requests: The number of requests per unit of
time handled by the unikernel i.

B. Communication Latency

Both uplink and downlink communication latency is con-
sidered in our system model.

1) Uplink Latency: Uplink latency is the latency of upload-
ing lUL bits of data from the vehicle v to the base station k
hosting the unikernel i:

DUL
v,ki

=
lUL

RUL
v,ki

(1)

where DUL
v,ki

is uplink latency, lUL is uplink demand, and RUL
v,ki

is uplink data rate at the radio channel between the vehicle v
and the base station:

RUL
v,ki

= Bv,ki × log2(1+
PR

v,ki

σ + Ik
) (2)
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Fig. 1. High-level overview of the system model. Total number of V vehicles
are served by K base stations, while base station k collocates a single server
hosting Nk number of unikernels. Each unikernel is responsible to handle a
single service of a single vehicle.

where Bv,ki is the communication bandwidth allocated to the
channel between the vehicle and the base station, PR

v,ki
is the

power of received signal at the base station, σ is the thermal
noise, and Ik is the interference coming from all concurrent
communications with base stations other than the base station
k.

2) Downlink Latency: Downlink latency, is the latency of
downloading lDL bits of data from base station k hosting
unikernel i to vehicle v:

DDL
ki,v =

lDL

RDL
ki,v

(3)

where DDL
ki,v is downlink latency, lDL is downlink demand, and

RDL
ki,v is the downlink data rate of radio channel between the

base station k hosting the unikernel i and vehicle v:

RDL
ki,v = Bki,v× log2(1+

PR
Vki ,v

σ + Ik,v
) (4)

where Bki,v is the communication bandwidth between the base
station and the vehicle, PR

Vki ,v
is the power of received signal at

the vehicle, σ is the thermal noise, and Ik,v is the interference
of other base stations, except the base station k. In each base
station, we assume that the communication bandwidth and
transmission power is proportionally divided by the number of
hosted unikernels. Hence, considering BBS

k as the bandwidth
of base station k and PTBS

k as the transmission power of base

station k, we have Bki,v =
BBS

k
Nk

and PT
ki,v =

P
TBS
k
Nk

, where PT
ki,v is

the transmission power allocated to Ui by the base station k.
Similarly in each vehicle, considering BV

v as the communica-
tion bandwidth of vehicle v, PTV

v as the transmission power of
vehicle v, and NV

v as the number of unikernels per vehicle, we

assume Bv,ki =
BV

v
NV

v
and PT

v,ki
= P

TV
v

NV
v

, where Bv,ki is bandwidth of
vehicle-base station communication and PT

v,ki
is the transmis-

sion power allocated to Ui by vehicle v. The communication
bandwidth that the vehicle and base station allocate should be
identical. However, due to the unpredictability and resource
restrictions in the base station side, we assume that only the
base station side has a bandwidth constraint for both uplink

and downlink communications. Hence, Bki,v = Bv,ki =
Bk
Nk

. As
each unikernel has a unique index i ∈ ⟨1,U⟩, for the sake of
brevity, hereafter we respectively use Bi and Pi notations to
refer Bki,v and PT

ki,v.

C. Computation Latency

The computation latency, DCP
ki,v

, is the computation latency
of handling the vehicular request by the VEC server, issued
from the vehicle v to the server k hosting the unikernel i.
DCP

ki,v
is a function of computation demand, lCP, the number

of processing elements (processor cores) allocated to the
unikernel, Xi, and the processing power of each processing
element in terms of Floating-point Operations Per Second
(FLOPS), χ . We assume the computation can be parallelized
over any arbitrary number of available processing elements.
We also assume the parallelism overhead inside a VEC server,
including the overhead of inter-processor communication and
the aggregation of final result, is negligible compared to
the total computation and communication time [7]. Hence,
we assume that the processing time linearly decreases with
increasing the level of parallelism [7].

DCP
ki,v =

lCP

χ×Xi
(5)

We assume each unikernel only uses the local processing
elements of the host server.

D. Storage Latency

We assume each unikernel only uses the local I/O cache and
storage resources of the host server. We also assume that the
installed storage capacity on each server is always greater than
the needs of hosting unikernels. This is a practical assumption,
due to the relative affordability of the main storage media,
enabling the system designers to provision a capacity larger
than the demands of normal missions. We assume the Solid
State Drive (SSD) for the main storage media and high-end
Non-Volatile Memory (NVM) for the I/O cache. We assume
conventional best practices for the I/O cache, including the
write-back policy and Least Recently Used (LRU) replacement
policy [12], [13]. We also assume that the missed read requests
are promoted from the main storage to the I/O cache [14].
Considering the technical specification of commercial SSDs
and NVMs, NVMs perform better than SSDs in terms of
both read/write latency and Input/Output Per Second (IOPS).
Hence, considering Lm and Lc respectively as the latency of
main storage and I/O cache memory:

Lc < Lm (6)

1) Modeling Storage Latency: A storage access is either
write or read. As in the write-back policy, write requests are
written directly to the I/O cache, they have a similar latency
of DS

Wv,ki
, less influenced by the efficiency of I/O cache man-

agement policy [9], [10]. However, the average latency of read
requests in each unikernel, DS

Rki ,v
, is affected by the capacity of

allocated I/O cache, mandating an efficient allocation policy.
DS

Rki ,v
is a function of I/O cache hit ratio, as well as the latency

of I/O cache memory and main storage [12], [15]. I/O cache



hit ratio, in turn, is a function of the allocated I/O cache size.
Considering Qi as the I/O cache size allocated to the unikernel
i and ηi(Qi) as the I/O cache hit ratio of Ui:

DS
ki,v = lR× (ηi(Qi)×Lc +(1−ηi(Qi))×Lm) (7)

2) Developing Hit Ratio Curve: To develop the hit ratio
curve, ηi(Qi), for each unikernel, we use stack distance anal-
ysis on the history of data accesses in the previous monitoring
period. Per storage access, the stack distance is defined as
the number of accesses to distinct storage addresses, after
the previous access to the same address. When using LRU
replacement policy, an I/O cache size equal or greater than
s+1 assures a cache hit on all accesses with a stack distance
not larger than s. Hence, considering Ψi and NA

i respectively
as the stack distance histogram of storage accesses and the
total number of storage accesses in Ui:

ηi(Qi) =
∑

Qi−1
s=0 Ψi(s)

NA
i

(8)

Given ∆i as the maximum stack distance of Ψi, we define the
ideal cache size as ∆i + 1, for which we do not get perfor-
mance improvement by any larger cache size. We assume that
ηi(Qi) is a concave function when LRU replacement policy
is used [16]. Hence, Ψi(s) is a monotonically non-increasing
function.

E. Total Latency

The total latency per VEC request of Ui is the aggregation
of uplink communication latency, downlink communication
latency, computation latency, storage write latency, and storage
read latency:

Dv,ki = DUL
v,ki

+DDL
ki,v +DCP

ki,v +DS
ki,v (9)

III. PROBLEM DEFINITION

We aim to reduce the total latency of the services requested
by vehicles, taking into account communication, computation,
and storage factors. The objective metric should reflect the
three unikernel characteristics that we focus on, namely, the
average priority per request ρ , the number of requests F , and
the average latency per request D (see Section II-A). We define
the objective metric as the product of these three characteristics
and the association matrix A which defines the unikernel to
server (base station) allocation, a× ρ × F ×D. The search
space includes the association matrix A and latency D, while
priority ρ and number of requests F are control variables. Our
search space affecting the latency includes allocated I/O cache
size Qi, number of allocated CPU cores Xi, and the unikernel
to base station association ai,k which affects communication
bandwidth Bi.

min
K

∑
k=1

U

∑
i=1

ai,k×ρi×Fi×Dv,ki(Xi,Bi,Qi) (10)

s.t.
K

∑
i=1

an,i = 1, ∀n ∈ ⟨1,U⟩ (a)

U

∑
i=1

ai,k×Xi ≤ XBS
k , ∀k ∈ ⟨1,K⟩ (b)

U

∑
i=1

ai,k×Qi ≤ QBS
k , ∀k ∈ ⟨1,K⟩ (c)

Qi ≤ ∆i +1, ∀i ∈ ⟨1,U⟩ (d)
U

∑
i=1

ai,k×Bi ≤ BBS
k , ∀k ∈ ⟨1,K⟩ (e)

where U is the number of unikernels, BBS
k is the communi-

cation bandwidth of the base station k, XBS
k is the number of

processing units in the edge computing server k, and QBS
k is

the size of I/O cache memory in the edge computing server k.
Constraint (a) in (10) limits the allocation of each unikernel

to one and only one base station. We use the constraint (b)
and (c) to respectively ensure that the processing units and
cache memory allocated by the edge computing server k does
not exceed the number of processing units and cache memory
size of the server k. The constraint (d) makes sure that the total
cache space allocated to the unikernel i is not larger than the
ideal cache space determined by the maximum stack distance,
∆i. Constraint (e) ensures that the communication bandwidth
allocated by base station k does not exceed the total bandwidth
of the base station k. We assume that the system model can
satisfy the possible constraints related to the communication
power.

IV. PROPOSED SOLUTION

In this section, we propose a solution that deals with the
assignment of unikernels to base stations, the allocation of
computational resources, and the distribution of storage I/O
cache.

A. Unikernel to Base Station Association

This section describes a problem of finding a placement
of unikernels to edge computing servers that are collocated
with base stations. The goal is to minimize the communication
objective metric, by relaxing the computation and storage
constraints. The communication resources are managed by the
base station collocating the edge computing server. Moreover,
regarding the system model, each base station collocates one
and only one server. Hence, the unikernel to edge computing
server association is determined by the unikernel to base
station association. Assuming proportional BW distribution
over all unikernels associated to a base station, we remove the



communication bandwidth constraint and find the sub-optimal
unikernel to base station association, formulated as follows:

min
K

∑
k=1

U

∑
i=1

ai,k×ρi×Fi(
lULi

BBS
k

∑
U
j=1 a j,k

× log2(1+
PTV ( λ

4πdi,k
)2

σ+Ik
)

+

lDLi

BBS
k

∑
U
j=1 a j,k

× log2(1+
PTBS ( λ

4πdi,k
)2

σ+Ik,vi
)

) (11)

The association problem is a weighted bipartite graph
matching in the unikernels part, where the minimum sum of
weights is desired. To solve this problem, we turn this graph
to a new bipartite graph with equal number of vertices in
each part. To this end, we assume having U speculative base
stations (assuming U is the number of unikernels and each
base stations is associated to U

K speculative base stations),
where each speculative base station has the bandwidth of
BBS×K

U , given BBS is the bandwidth of each base station
and K is the total number of base stations. Afterwards, we
use the Hungarian algorithm to find the perfect matching of
U unikernels to U speculative base stations. This algorithm
allocates equal number of unikernels (U

K ) to each base station.

B. Computation Resource Allocation
After fixing the unikernel to base station association, we

locally optimize the computation resource allocation to each
unikernel, formulated as follows:

min
Nk

∑
i=1

ρi×Fi×
lCPi

χ×Xi

s.t.
Nk

∑
i=1

Xi ≤ XBS
k (12)

We define Wi = ρi × Fi ×
lCPi
χ

and solve the problem using
Lagrangian relaxation. Let the Lagrangian function L be:

L =
Nk

∑
i=1

Wi

Xi
+Λ(

Nk

∑
i=1

Xi−XBS
k ) (13)

By taking the derivative of L we have:
∂L
∂Xi

=−Wi

X2
i
+Λ = 0 (14)

Solve it for Xi:
Xi =

2

√
Wi

Λ
(15)

We can use the constraint ∑
Nk
i=1 Xi = XBS

k to solve for Λ:

XBS
k =

Nk

∑
i=1

2

√
Wi

Λ
(16)

Solving for Λ, we get:

Λ = (
∑

Nk
i=1

2
√

Wi

XBS
k

)2 (17)

Finally, we substitute this value of Λ into the expression for
Xi (15) and substitute Wi:

Xi = XBS
k ×

2
√

ρi×Fi× lCPi

∑
Nk
i=1

2
√

ρi×Fi× lCPi

(18)

C. Storage I/O Cache Resource Allocation

After fixing the unikernel to base station association, we
locally optimize the I/O cache resource allocation to each
unikernel.

min
Nk

∑
i=1

ρi×Fi× lRi × (Lm +(Lc−Lm)×
∑

Qi−1
s=0 Ψi(s)

NA
i

)

s.t. :
Nk

∑
i=1

Qi ≤ QBS
k (a)

Qi ≤ ∆i +1 ∀i ∈ ⟨1,Nk⟩ (b)

The term (Lc−Lm) is always negative from (6) and Ψi is a
monotonically non-increasing function from the system model.
Hence, a greater Qi value reduces the objective metric. We use
an optimal algorithm proposed by [1] to find Qi in polynomial
complexity, shown in Algorithm 1.

V. RESULTS

This section outlines the simulation setup and assesses
the performance of the proposed framework, focusing on the
average latency.

A. Simulation Setup

In our simulations we consider the computation demand
proportional to the number of bits transmitted/received, as
assumed by Liu et. al. [7], in terms of Floating-Point Op-
erations per bit (FLOP/bit). To assess the effectiveness of
the proposed framework under authentic storage workloads,
we process the real block-layer traces of the edge computing
server that serves the autonomous vehicles. Basic services
are generated using the Flexible I/O (FIO) benchmarking
tool [17], and storage block accesses for each service are
collected using the Linux blktrace tool [18]. We establish
four vehicular services, namely collision avoidance, sensing
data upload, map/update download, and other general services.
These services are detailed in Table I.

Simulation experiments are conducted using five representa-
tive workloads: Collision avoidance (Collision), Sensing data
upload (Sensing), Map and software update (Update), Other
services for the autonomous vehicles (Other), and a mix of
all services with equal probability for each of the four basic
service types (Mix). Vehicular edge computing is simulated
with system model parameters summarized in Table II. Each
edge computing server is assumed to be collocated with one
base station deployed along the road, maintaining an equal
inter-site distance of 1000 m. The vehicle trajectories are

Algorithm 1 Local Optimum I/O Cache Allocation
1: for i← 1 to Nk do
2: Qi = 0
3: end for
4: while ∑

Nk
j=1 Q j ≤ QBS

k do
5: i = max(ρr×Fr× lRi ×Ψr(Qr)),r ∈ ⟨1,Nk⟩
6: if Qi < ∆i +1 then
7: Qi = Qi +1
8: end while



TABLE I
SERVICE CHARACTERISTICS

Collision
Avoidance

Sensing
Data Upload

Map/Software
Update Other

Read/Write % 70/30 0/100 100/0 70/30
Request Size 32 kb 32768 kb 32768 kb 32 kb

Access Pattern Zipf 1.2 Sequential Sequential Zipf 1.2
Priority (ρ) Real-time (1) Normal (0.5) Normal (0.5) Normal (0.5)

CPU FLOP/bit 104 103 103 104

modeled using data from the highD dataset [19], encompassing
the entire traffic data (16.5 hours) with a timescale of 1/25
seconds. Communication bandwidth and power are allocated
proportionally to the number of unikernels hosted by the
edge computing server of the base station serving the vehicle,
considering a carrier frequency of 2.6GHz.

Given that no prior research has concurrently addressed
communication, computation, and storage latency together, we
conduct a comparative analysis with three leading methods.
These methods encompass an I/O cache architecture designed
for edge and virtualized environments Efficient Two-level I/O
Caching Architecture for Virtualized Platforms (ETICA) [9],
a platform for storage I/O cache and computation resource
allocation for Vehicular Edge Computing (VEC) applications,
Joint Optimization of Communication and Storage Latencies
for Vehicular Edge Computing (JOCS) [2], and a workload
scheduling platform for VEC that accounts for communication
and computation latencies, referred to as Workload Schedul-
ing in Vehicular Networks With Edge Cloud Capabilities
(WSVN) [20].

ETICA and WSVN frameworks involve a single server,
with ETICA omitting consideration of communication latency.
For comparative purposes, we assume that ETICA allocates
unikernels to the edge computing server based on free cache
space, prioritizing the base station with the lowest distance
from the vehicle. This allocation process is assumed to occur
sequentially, starting from unikernel 1 and concluding with
unikernel U . WSVN considers communication latency for re-
quest upload and response download, along with computation
latency, albeit without addressing storage latency. To facilitate
a meaningful performance comparison, we treat high-priority
vehicle services, such as collision avoidance, as analogous
to WSVN’s Delay-Intolerant Tasks. Moreover, we align each
storage request in our system model with a computation
request in WSVN, assuming that both data size (in bits)
and computation requirements (CPU cycles) in WSVN are
proportional to the storage access size in our system model. We
also assume that JOCS and ETICA allocate the computation
resources proportional to the storage access size.

B. Results

Figure 2 illustrates a comparison of the average latency be-
tween the proposed framework and state-of-the-art approaches.
The depicted data includes the average overall latency across
all services, encompassing both high-priority and normal ser-
vices. The proposed framework showcases an improvement
in average latency up to 64% across all examined work-
loads. This enhancement is attributed to efficient allocation
of computation resources, storage I/O cache assignment, and

service placement, considering service priority and thereby
reducing computation, communication, and storage latency.
The most significant latency improvement is observed in the
Mix workload, justified by its combination of high-priority
and normal-priority services, benefiting significantly from the
proposed framework’s consideration of service priority and
computation latency in the objective metric.

In Collision, Sensing, Update, and Other workloads, the
proposed method’s superiority over ETICA stems from ef-
ficient computation and communication resource allocation.
Additionally, its advantage over WSVN is attributed to com-
putation, storage and communication resource allocations.
In scenarios such as Collision, Sensing, Update, and Other
workloads, where only one type of vehicular service is
present, the proposed method exhibits performance slightly
better than JOCS. This observation is explained by our simu-
lation assumption, which assumes proportional computation
resource allocation for both JOCS and ETICA to have a
fair comparison, even though these methods do not deal
with computation latency originally. Consequently, the request
sizes have minimal variation, the proposed method allocates
comparable computation resources to all unikernels of the
VEC server, resulting in similar computation latency. However,
it is important to note that this alignment may not hold
true in realistic applications where a mix of different request
sizes with diverse computation demands is encountered, as
evidenced by our mixed workload results.

In the case of mixed workload, the proposed method
demonstrates superiority due to more efficient storage, com-
putation, and communication resource management, irrespec-
tive of service priority. In Sensing and Update workloads,
WSVN slightly outperforms ETICA, attributed to their se-
quential access patterns. Sequential workloads, lacking I/O
cache benefits, result in similar storage performance for all
methods. Workloads like Collision and Other, featuring ran-
dom read/write access patterns, benefit from efficient I/O
cache resource allocation, reducing storage latency. WSVN,
with relatively high storage latency, experiences higher overall
latency. The proposed method, similar to JOCS and ETICA
in storage latency when services have the same priority,
outperforms them in Collision and Other workloads due to
more effective communication resource allocation, resulting
in lower communication latency.

Figure 3 illustrates the contribution of communication, com-
putation, and storage latencies to the overall latency. The figure

TABLE II
SIMULATION PARAMETERS

Notation Parameter Value
K Number of edge computing servers 10
U Number of unikernels (4 unikernels per vehicle) 1000
Lc I/O cache memory (SSD) latency 25 us
Lm Main storage (HDD) latency 10 ms
PT Transmit power of edge computing server base station 46 dBm
PT

i Transmit power of vehicle 20 dBm
l Size of unit storage access 32 kb
σ Noise power -90 dBm
B Bandwidth of edge computing server base station 100 MHz
χ FLOPS of each processing element 20×109

XBS Number of processing elements in each server 100
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Fig. 2. Aggregation of computation, communication, and storage latency for: a) Collision Avoidance, b) Sensing Data Upload, c) Map/Software Update, d)
Other, and e) Mix workloads.

0%

20%

40%

60%

80%

100%

Collision Sensing Update Other Mix

L
at

e
nc

y 
(%

)

Storage computation Communication

Fig. 3. Share of computation, communication and storage in overall latency.

1.E+00
1.E+02
1.E+04
1.E+06
1.E+08
1.E+10
1.E+12

1000 3000 10000 30000 100000

C
P

U
 C

yc
le

s

Number of Unikernels, U

Number of Servers, K 10
Number of Servers, K 100

Fig. 4. Running CPU cycles of the proposed algorithm for different number
of unikernels and edge computing servers.

highlights the predominant role of communication latency,
accounting for 39% to 62% of the overall latency.

To showcase the scalability of our proposed approach,
Figure 4 presents the CPU cycle of the algorithm concerning
varying numbers of unikernels and edge computing servers.
The figure illustrates that augmenting the number of edge
computing servers from 10 to 100 results in a three-orders-
of-magnitude increase in execution cycles. On the other hand,
when the number of unikernels is increased from 1000 to
10,000, the execution cycles exhibit nearly linear growth.

VI. CONCLUSION

In this paper, we have proposed an innovative approach for
the allocation of computation, communication, and storage
I/O cache resources within VEC platforms. By prioritizing
key vehicular services with diverse demands, we employ dual
decomposition and Lagrangian relaxation to achieve a compu-
tationally viable solution for unikernel placement, computing
resource allocation, and I/O cache resource allocation on the
edge computing server. The proposed methodology achieves a
remarkable reduction in service latency, demonstrating up to a
64% improvement compared to the prevailing state-of-the-art
resource allocation method in VEC.
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