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Abstract—Low-latency data access is crucial in edge clouds
serving autonomous vehicles. Storage I/O caching is a promising
solution to deliver the desired storage performance at a reasonable
cost in vehicular edge platforms. Current storage I/O caching
methods, however, are not specialized for workload characteristics
and demands of autonomous vehicles and/or do not consider
the communication latency between the vehicle and the base
station hosting the edge cloud node. In this work, we propose
a storage mechanism for vehicular edge cloud platforms taking
communication, I/O cache, and storage latencies into account. We
evaluate our proposed framework using realistic storage traces of
vehicular services. Our framework reduces the average latency
and the average latency of high-priority services by up to 1.56x
and 2.43x, respectively, compared to the state-of-the-art works.

Keywords—Vehicular Edge Cloud, I/O Cache, Communication,
Storage.

I. INTRODUCTION

Vehicle to infrastructure communication is a challenge on
the way towards autonomous vehicles. At the same time, Mobile
Edge Computing (MEC) is recognized as a promising solution
to deliver low-latency vehicular services [1], [2]. Vehicular
services are characterized by unstructured data types and a huge
volume of data transmission, while some of these services, such
as collision avoidance, are safety- and time-critical, requiring
sub-millisecond latency [3], [4]. These strict requirement, apart
from its communication and computation challenges, mandates
a large investment on emerging data storage architectures for
autonomous vehicles [4]–[7].

Each vehicular service has different priority, data access
pattern, and/or data transmission volume [3], [4]. In vehicular
edge cloud platforms, the latency of access to stored data is
a function of communication and storage resources allocated
to the vehicular service. Achieving an optimal solution via a
joint adjustment of both communication and storage resource
allocation is of a crucial importance. However, as this problem
is NP-complete, finding the optimum solution under realistic
assumptions is complicated if not impossible [8].

Previous efforts dealing with latency minimization in
vehicular edge cloud platforms mainly focus on computation
and/or communication latencies. In [9], the authors propose
a computation offloading framework for vehicular edge cloud
platforms. This work dynamically decides on either local
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computation or offloading to the edge cloud servers, regarding
the cost and delay constraints. The authors in [10] consider
content reusability among the vehicles, proposing a content-
caching framework for vehicular edge cloud platforms. In
[11], a framework targetting the minimum violation of latency
constraints is proposed for a vehicular edge cloud, focusing
on computation and communication latencies. The authors
in [12] propose a computation offloading framework caring
about privacy concerns. This work concentrates on allocating
computing resources, taking both execution time and energy
as its objective. In [13], TV white space bands is used for
computation offloading of vehicular services. The sub-optimal
solution manages to jointly allocate radio and power resources
to reduce the cost objective which is a function of queue size.
In [14], the maximum system utilization is pursued in allocating
communication and computation resources in a vehicular edge
computing platform, proposing a sub-optimal solution for the
NP-complete problem. With a deep reinforcement learning
approach, [15] jointly optimizes the latency of communication,
computation, and network caching.

All works [9]–[15], however, do not address the storage
latency, which is not negligible and neglecting it leads to sub-
optimal solutions for data access. In our prior work [4], we
investigate the storage I/O caching for the vehicular edge cloud
platforms, nevertheless, only from the storage perspective not
considering the communication latency between the vehicles
and storage. Let us point out that the storage I/O caching
addressed in our paper is completely different and independent
of the content caching addressed, e.g., in [10], [15]. The storage
I/O caching aims to reduce the latency of access to stored data in
cache memory regardless of the content. To our best knowledge,
no previous work explores data access in the vehicular edge
cloud platforms considering jointly the latency of the I/O cache
for storage and the communication latency.

In this paper, we focus on a joint allocation of communi-
cation and storage resources for access to data of vehicular
services such as collision avoidance, map/SW download,
sensing data upload, stored in the edge clouds. Our proposed
framework dynamically determines the service data placement
and the amount of communication and storage resources
allocated to each service. Our objective function is a factor of
service priority and communication and storage latencies. As
the targeted problem is NP-complete, we propose a feasible sub-
optimal solution using dual relaxation, jointly considering both
communication and storage latencies. We validate an efficiency
of the proposed framework using realistic storage traces of the
services related to autonomous vehicles. The results show that
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Fig. 1: Overview of the system model with unikernel i of edge
cloud node k, Ui,k associated to vehicle v (Vv).

our proposed framework reduces the average latency of the
investigated services compared to the state-of-the-art works.

II. SYSTEM MODEL

This section outlines model of the vehicular edge computing
including edge cloud, mobile communication, and storage.

A. General System Overview

We assume the vehicular edge cloud platform consists of
K edge cloud nodes connected via mobile networks to the
vehicles. Each edge cloud node is collocated with one base
station of mobile network, i.e., there are also K base stations.
Offloading the services of vehicles into the edge cloud takes
place in the form of unikernels [16]. A vehicle has multiple
unikernels for different services, such as collision avoidance
and map update, while the unikernels can be hosted in different
edge cloud nodes. In each edge cloud node, a hypervisor is
responsible for managing the storage resources. The hypervisor
allocates the resources to each unikernel independently.

We assume each edge cloud node (server) is collocated
with a base station which is responsible for allocating the
communication resources. The storage resources managed by
the hypervisor also include main storage resources and I/O
cache resources. We assume that the main storage allocation
from each edge cloud node is always feasible, i.e., the edge
cloud nodes are equipped with enough provisioned main storage
resources. Hence, we concentrate on efficient I/O cache and
communication resource management which is crucial in the
low-latency vehicular edge platforms. As in [17], [18], we
further expect each edge cloud node allocates I/O cache to the
hosting unikernels from the node’s local resources.

In the vehicular edge storage environment, we characterize
each unikernel by the following parameters:

• Latency of storage request, i.e., the time it takes from
sending a storage read request by the vehicle, to
receiving data from the edge cloud node at the vehicle.
The latency of the storage request for the unikernel
i hosted by the edge cloud node k is defined as the
aggregation of the communication latency DC

i,k and the
storage latency DS

i,k, while the communication latency
includes the uplink latency, DC

ULi,k
and the downlink

latency, DC
DLk,i

:

Di,k = DC
ULi,k

+DC
DLk,i

+DS
i,k (1)

• Frequency (number) of storage accesses F , i.e., the
number of storage accesses per time unit. As the
accesses may have different size, we consider l as
the unit storage access size and translate any arbitrary
storage access with a size l′ to multiple accesses with
the unit size l, hence F represents the number of unit
accesses with the size l.

• Priority ρ as a fixed, predefined value (0≤ ρ ≤ 1); the
greater ρ represents the higher priority and criticality
of the unikernel.

B. Communication Latency

The communication latency is composed of downlink and
uplink communication.

1) Uplink Latency: The uplink communication latency
DC

ULi,k
between the vehicle v to which the unikernel i is

associated to, and the base station with the edge node k hosting
the unikernel i is defined as:

DC
ULi,k

=
l×8
RUL

i,k
(2)

where l is the size of the unit storage access (in Bytes) and
Ri,k is the uplink communication data rate over the channel
between the vehicle v owning the unikernel i and the base
station k (in bits per second), defined as:

RUL
i,k = Bi,k× log2(1+

PR
i,k

σ + Ii,k
) (3)

where Bi,k is the bandwidth allocated for the communication
between the vehicle v to which the unikernel i is associated and
the base station k, PR

i,k is the received signal power at the base
station of the edge cloud node k hosting the unikernel i from
the vehicle v, σ is the power of thermal noise experienced by
the base station, and Ii,k is the interference power imposed to
the base station by other vehicles.

According to Friis’ transmission equation, PR
i,k is:

PR
i,k = PT

Vi
(

λ

4πdi,k
)2 (4)

where PT
Vi

is the transmission power of the vehicle v to which the
unikernel i is associated to, λ is the communication wavelength,
and di,k is the distance between the base station k and the vehicle
v owning the unikernel i.

2) Downlink Latency: Downlink communication latency
DC

DLk,i
between the base station k of the edge cloud node hosting

the unikernel i and the vehicle v to which the unikernel i is
associated to is similarly defined as (2) by substituting RUL

i,k
with RDL

k,i , where RDL
k,i is the downlink communication data rate

over the channel between the base station k and the vehicle v
to which the unikernel i is associated to (in bits per second).
We define the downlink data rate as:

RDL
k,i = Bk,i× log2(1+

PR
Vk,i

σ + Ik,i
) (5)
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where Bk,i is the bandwidth allocated for the communication
between the base station k and the vehicle v, PR

Vk,i
is the received

signal power at the vehicle from the base station k, σ is the
power of thermal noise experienced by the vehicle v, and Ik,i is
the interference imposed to the vehicle v from all base stations
but the base station k. Analogously to (4), PR

Vk,i
is defined as:

PR
Vk,i

= PT
k,i(

λ

4πdk,i
)2 (6)

where PT
k,i is the transmission power of the base station k to

the vehicle v to which the unikernel i is associated, and dk,i is
the distance between the base station k and the vehicle v.

For both downlink and uplink, we assume the communi-
cation bandwidth and power are allocated by the transmitting
device proportionally to the number of unikernels of the given
hosted by the edge cloud node of the base station serving the
vehicle, i.e., Bk,i = BBSk/Mk and PT

k,i = PT
BSk

/Mk.

C. Storage Latency

We consider the main storage uses either Hard Disk Drive
(HDD) or mid-range Solid-State Drive (SSD). We also consider
a three layer I/O cache architecture of Dynamic Random-Access
Memory (DRAM), Non-Volatile Memory (NVM), and SSD,
while considering Read-Only policy for DRAM cache, Write-
Back policy for NVM and SSD cache, Least Recently Used
(LRU) replacement policy in all cache layers, exclusive cache
management in all layers, and promotion to DRAM upon
DRAM cache miss, as conventionally considered in state of
the art I/O cache architectures [4], [17], [18]. The storage
accesses is composed of read and write requests. All write
requests have typically similar latency, as these are always
written in the first cache layer and are not influenced by the
I/O cache management policy [17], [18]. Moreover, the storage
write requests are usually not in the critical path of edge cloud
storage systems. Hence, we concentrate on optimizing the read
requests, considering a constant latency for all write requests.

Average storage read latency for the unikernel i of the edge
cloud node k is a function of the cache hit ratio, as well as the
latency of cache memory media and main storage media [4].
Considering a single cache memory layer (extendable to more
layers [4]), the average storage read latency is:

DS
i,k = ηi,k×Lcache +(1−ηi,k)×Lmain (7)

where ηi,k is the cache memory hit ratio for the unikernel i of
the edge cloud node k, Lcache is the latency of cache memory,
and Lmain is the latency of main storage. The cache memory
hit ratio η is calculated by Hit Ratio Curves (HRC) [19] that
plot the cache hit ratio as a function of the cache size by
analyzing the stack distance. The stack distance of an access
to the memory address a is the number of unique references
to other memory addresses before a successive access to a. In
a cache size of s with LRU replacement policy, all memory
accesses with the stack distance of s− 1 and below have a
hit. The HRC is a histogram of stack distance for individual
references. η of the cache size s is equal to the cumulative
distribution function of HRC at the point s− 1. Note that,
in each monitoring period, the HRC is constructed once. We
assume that η is a concave function of cache size (Q), which

is conveniently considered as a mostly practical assumption in
mainstream applications when the optimum cache replacement
policies, such as LRU, are employed [20]. Finally, we assume
that the main storage is slower than the cache memory, hence:

Lcache < Lmain (8)

III. DYNAMIC DECISION-MAKING PROBLEM

In this section, we present the dynamic decision-making
problem, as well as our objective function and its constraints.
The problem is to minimize the storage access latency of
services provided to vehicles considering communication and
storage aspects. Our objective function should take all three
unikernel characteristics we concern about, i.e., priority ρ ,
frequency F , and latency D, into account. The objective function
is defined as the multiplication of these three characteristic,
ρ ×F ×D, hence, the latency of a unikernel with a higher
priority and frequency should be of a higher impact on the
objective function. Thus, we formulate the problem as:

min
K

∑
k=1

Mk

∑
i=1

ρi,k×Fi,k×Di,k (9)

s.t.
Mk

∑
i=1

Qi, j,k ≤ Q j,k, ∀k ∈ ⟨1,K⟩ ,∀ j ∈ ⟨1,Nl⟩ (a)
N1

∑
j=1

Qi, j,k ≤ ∆i,k +1, ∀k ∈ ⟨1,K⟩ ,∀i ∈ ⟨1,Mk⟩ (b)

where ∆i,k is maximum stack distance in the unikernel i of the
edge cloud node k, Mk is the number of unikernels in the edge
cloud node k, K is the number of edge cloud nodes, ρi,k is the
priority of the unikernel i of the edge cloud node k, Fi,k is the
storage access frequency of the unikernel i of the edge cloud
node k, Qi, j,k is the cache memory allocated from the layer j
to the unikernel i of the edge cloud node k, and Q j,k is the
size of the cache memory layer j in the edge cloud node k.

The first constraint in (9) assures that the aggregation of
allocated cache memory from the layer j of edge cloud node k
is not greater than the size of cache memory installed in edge
cloud node k. The second constraint guarantees the aggregation
of cache space allocated to the unikernel i from different cache
layers is not greater than the optimal cache space determined
by the maximum stack distance, ∆i,k.

IV. PROPOSED SOLUTION

The optimization problem presented in Section III is NP-
complete. In this section, we propose a sub-optimal solution
using dual relaxation. To this end, we first relax the cache size
constraint on each node (constraint (a) in (9)) and replace it
with a constraint on the overall cache size allocated from all
edge cloud nodes. In the relaxed problem, the cache allocation
is always possible from the edge cloud node whose base
station has the highest channel quality, resulting to the optimum
communication latency. Thus, we propose an optimal solution
for the relaxed problem determining the I/O cache size allocated
to each service. Afterwards, we propose a sub-optimal solution
for the cache placement jointly considering both communication
and storage latencies. For the service placement, we initially
assume the I/O cache allocated to all services have the same
size and we map the problem into a perfect matching problem
in a bipartite graph. However, when the actual optimum cache
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size of each service is allocated, the cache size constraint can
be violated in some edge cloud nodes. To avoid the violation
of cache size constraint, we propose a direct heuristic method
to re-place some services from violated edge cloud nodes into
the edge cloud nodes with free I/O cache space.

A. Constraints Relaxation and optimum cache allocation

To solve the problem, we first relax the cache size constraint
on each edge cloud node, assuming the efficient cache size
can be allocated from any edge cloud node, as far as the
overall allocated cache does not exceed the aggregated cache
sizes available on the edge cloud nodes. This relaxation allows
us to replace the constraint (a) in (9) with ∑

K
k=1 ∑

Mk
i=1 Qi, j,k ≤

∑
K
k=1 Q j,k. As such, the cache allocation is always possible from

the edge cloud node whose base station has the highest channel
quality, resulting in the minimum communication latency.

In Algorithm 1, we propose a definite method to find the
optimum solution to (9) with relaxed constraint (a). We consider
zero cache allocation for the initial state and we allocate the
cache chunks one-by-one until all chunks are allocated. Per
iteration, we find the unikernel i with the highest objective
achievement, α = ρi×Fi×Ψi(Qi), defined as the increase in
objective function when allocating one extra cache chunk to
the unikernel. Let Qi be the current number of cache chunks
allocated to the unikernel i and Ψi(Qi) be the stack distance
histogram of i at the point Qi. Regarding the definition of the
stack distance, Ψi(Qi) is an increase in the hit ratio caused by
the cache size increase from Qi to Qi +1. For example, when
the cache size increases from 0 to 1, the hit ratio increases by
Ψi(0). Let ηi(Qi) be the current hit ratio of the unikernel i and
ηi(Qi +1) be the hit ratio of i after allocating one extra cache
chunk to it; then, we have:

ηi(Qi +1) = ηi(Qi)+Ψi(Qi) (10)

We sort the unikernels by their objective achievement and
allocate one cache chunk from the edge cloud node k whose
base station has the highest channel quality to the unikernel
i with the maximum objective achievement. Afterward, we
increase Qi,k and QU

i to track the number of cache chunks
allocated to each unikernel, where Qi,k is the number of cache
chunks allocated from the edge cloud node k to the unikernel
i and QU

i is the number of chunks allocated to the unikernel i.
As we assume allocating cache to the unikernel only from one
edge cloud node, QU

i = Qi,k.

Algorithm 1 I/O Cache Size Determination
1: for i← 1 to NU do
2: QU

i = 0
3: end for
4: while ∑

NU
j=1 QU

j ≤ ∑
K
k=1 QE

k do
5: i = max(ρr×Fr×Ψr(QU

r )),r ∈ ⟨1,NU ⟩
6: if QU

i < ∆i +1 then
7: e = min(di,k),k ∈ ⟨1,K⟩
8: Qi,e+= 1
9: QU

i += 1
10: end while
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lem as a weighted bipar-
tite graph, matching in the
unikernels part.
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(b) Cache placement in dual placement
problem represented as a perfect match-
ing problem in a bipartite graph with the
same number of vertices in both parts.

Fig. 2: Cache placement problem graphs

B. Cache Placement Problem

In previous subsection, the optimal solution for the cache
size allocation is proposed for relaxed cache placement con-
straint. In such relaxed problem, we find the optimal cache size
considering the constraint limiting the total cache size allocated
to the unikernels to the aggregation of the cache space installed
throughout the edge cloud nodes, i.e., assuming:

NU

∑
i=1

QU
i =

K

∑
k=1

QE
k (11)

Our objective is to find a feasible assignment of the
unikernel to the edge cloud nodes by considering the allocated
cache sizes resulting into the minimum objective function value.
Hence, we exploit a weighted bipartite graph matching in the
unikernels part, as shown in Fig. 2a. Given our relaxed problem,
by removing the relaxed constraints from (9) and substituting
the communication latency from (2), the goal is to find a
feasible solution to the following problem:

min
K

∑
k=1

Mk

∑
i=1

ρi,k×Fi,k×
l×8

B× log2(1+
PT ( λ

4ρdi,k
)2

N+I )

(12)

s.t.
Mk

∑
i=1

Qi,k = Qk, ∀k ∈ ⟨1,K⟩

To solve this problem, we first define a dual problem by
considering equal cache sizes assigned to all unikernels and
map it to a Balanced Assignment problem that can be optimally
solved in polynomial time. In the dual problem we consider
each unikernel has the cache size QU (QU

i = QU ,∀i ∈ ⟨1,NU ⟩),
while the cache size of the edge cloud node, QE is divisible
to QU (QE

k |QU ,∀k ∈ ⟨1,K⟩). We replace each edge cloud node
of the cache size QE

k with rk edge cloud nodes of the cache

size C′Ek = QU , where rk =
QE

k
QU . Then, from (11), we can show

that the number of edge cloud nodes is equal to the number of
unikernels, while each unikernel is assigned to one edge cloud
node (Fig. 2b). Assigning the unikernels to the edge cloud
nodes is the balanced assignment problem, optimally solvable
in polynomial time using Hungarian algorithm. However, due
to the previous relaxation, the cache size constraint can be
violated in some edge cloud nodes (due to cache space over-
allocation), while some edge cloud nodes have free unallocated
cache space. As the previous cache placement problem assumes
the overall cache allocated to the unikernels is equal to the
overall cache installed on the edge cloud nodes, asserted in
(11), the aggregation of over-allocated cache space (the cache
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TABLE I: Combination of services in examined workloads.

Workload S1: Collision
Avoidance

S2: Sensing
Data Upload

S3: Map/Update
Download S4: Other

A 1x 1x 1x -
B 1x 2x 2x -
C 1x 3x 3x -
D 1x 1x 1x 1x

space allocated in an edge node over its installed cache size)
is equal to the aggregation of unallocated cache space in the
rest of edge cloud nodes.

To derive a feasible cache placement with the constraint (a)
in (9), we define the Replacement Cost Coefficient of unikernel
i, θi = Fi×Pi, as the product of access frequency and priority
of the unikernel i and we start re-placing the unikernels with
smallest θ to the edge cloud node with free cache space whose
base station has the highest channel quality. In the optimal
solution proposed in Section IV-A, the evaluated optimum
cache space is equal to the aggregation of cache resources
installed on the edge cloud nodes. Hence, we make sure this
direct algorithm can always place all unikernels with their
evaluated optimum cache space. However, in practice there
is a possibility of internal fragmentation after running the re-
placement algorithm. We define internal fragmentation as the
free cache space in an edge node that is too small be allocated
to any unikernel in the edge nodes with over-allocated cache
space. As an example, suppose we have the edge cloud node
e1 with 10 over-allocated cache chunks, while the edge cloud
nodes e2 and e3 have 8 and 2 free cache chunks, respectively.
Suppose that the unikernel u1 of e1 with the optimum cache
size of 9, has the smallest θ . The algorithm starts re-placing
the unikernels from the one which have the smallest θ , in this
example u1. In this example, however, the algorithm fails to
finish the re-placement of remaining unikernels, as u1 cannot
be allocated to either of e2 and e3. In this case, we take either
of two following decisions that results in the smaller objective
function value; a) re-place u1 to the edge node with the largest
free cache space, e2, and allocate all free cache space of e2 to
u1, and b) place u1 into the edge node it is already placed, e1,
with existing available cache resources.

V. PERFORMANCE ANALYSIS

In this section, we present simulation setup and the
performance of the proposed framework in terms of average
latency.

A. Simulation Setup

To evaluate the proposed framework, we post-processes
the real block-layer traces of the edge cloud node serving the
autonomous vehicles. To model vehicle’s movement, we capture
highway tracks data from highD dataset [21]. For each vehicle,
we run four vehicular services including collision avoidance,
sensing data upload, map/update download, and other services,
while each individual service runs as a single unikernel. The
characteristics of each service are detailed in Table II. We
conduct the simulations with four representative workloads
constructed by the combination of mentioned services with
different intensities, as detailed in Table I.

As no previous work considers both communication and
storage latency together, we compare the proposed framework

TABLE II: Characteristics of autonomous vehicle service types

S1: Collision
Avoidance

S2: Sensing
Data Upload

S3: Map/Update
Download

S4:
Other

Read/Write % 70/30 0/100 100/0 70/30
Access Pattern Zipf 1.2 Sequential Sequential Zipf 1.2

Priority Real-time Normal Normal Normal

TABLE III: Simulation Parameter Values

Notation Parameter Value
K Number of edge cloud nodes 10

NU Number of unikernels (4 unikernels per vehicle) 1000
Lcache (DRAM) I/O cache memory latency 7.9 ns
Lcache (NVM) I/O cache memory latency 70 ns
Lcache (SSD) I/O cache memory latency 25 us

Lmain Main storage latency 5 ms
PT Transmit power of edge cloud node base station 46 dBm
PT

i Transmit power of vehicle 40 dBm
l Size of unit storage access 4 KB
σ Noise power -90 dBm
B Bandwidth of edge cloud node base station 100 MHz

with two state-of-the-art I/O cache architectures for edge and
virtualized platforms, PADSA [4] and ETICA [18]. Both
works consider a single edge node and do not take the
communication latency into account. To be able to compare
communication latency, we consider both PADSA and ETICA
allocate unikernels to the edge cloud node with free cache space
whose base station has the highest channel quality, assuming
that the allocation is performed by order, started from the
unikernel 1 and finished with the unikernel NU . Table III
shows the simulation parameter’s values. We consider each
edge cloud node is collocated with one base station deployed
along the road with equal inter-site distance. We also consider
a bandwidth allocation with orthogonal frequency-division
multiplexing (OFDM) and frequency of 2.6GHz. We use Friis
transmission formula to calculate the signal path loss in free
space, considering isotropic antennas for both vehicle and base
station, respectively shown in (4) and (6). We consider a high
priority for collision avoidance services by setting ρ = 1 and
normal priority for the rest of vehicular services with ρ = 0.5.

Constructing the stack distance histogram Ψ and hit ratio
curve η for each unikernel is of time complexity O(NlogM)
and space complexity O(M), where N is the total number of
storage requests (length of workload) and M is the number of
unique references (addresses) in the workload [19]. Note that,
in each monitoring period, Ψ and η are constructed once.

B. Results

Fig. 3 compares the average latency of the proposed
framework with the state of the art works. The proposal
improves the average latency compared to the state of the
art works in all examined workloads, thanks to an efficient
service placement reducing the communication latency. Note
that PADSA and ETICA perform the same in terms of
communication latency and their performance difference is
due to the storage latency. We observe the most notable latency
improvement in the workload A. This observation is justified
by the fact that the workload A has the highest intensity of
the high-priority services and benefits more from the proposed
framework, which considers the priority of services in the
objective function.

Fig. 4 shows the a share of the communication and storage
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Fig. 3: Aggregation of communication and storage latency
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latencies in the overall latency for the proposed framework.
The figure shows the dominance of the communication latency
contributing to the overall latency with 51% to 83%. We observe
a higher share of the communication latency for the high-
priority services. This observation shows that the proposed
framework results in a lower latency for the high-priority
services. This latency reduction is mostly due to an improved
storage latency.

Fig. 5 shows the percentage of unikernels placed in the
edge cloud node whose base station has the highest channel
quality. The results show that more than 69% of unikernels (up
to 79% in the case of workload A) are placed in the edge cloud
node whose base station has the highest channel quality. In the
workload A, the higher percentage of unikernel placement to
the base station with the greatest base station to vehicle channel
quality is justified by the lower density of the normal-priority
services in the workload , making a room for a more efficient
placement of the high-priority services.

VI. CONCLUSION

In this paper, we have proposed a dynamic decision-making
system for communication and I/O cache resource allocation
and placement in the vehicular edge cloud platforms. A sub-
optimal solution is proposed using dual relaxation and an
algorithm finding the optimum I/O cache size in the relaxed
problem is presented. For the service placement with the
minimum communication latency, we first assume the I/O cache
allocated to all services have the same size and map the problem
into a perfect matching problem in a bipartite graph, solvable
in polynomial time. Finally, we propose a direct heuristic to
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Fig. 5: Percentage of unikernels placed in the edge cloud node
which base station has the highest channel quality

remove the cache size constraint violation in some edge cloud
nodes. The proposed framework reduces the average latency and
the average latency of high-priority services respectively by up
to 1.56x and 2.43x compared to the state-of-the-art. In the future
works, we explore more realistic vehicular edge platforms. We
also investigate how vehicle-to-vehicle communication can be
leveraged in reducing communication and storage latency of
vehicular services in practical scenarios.
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