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Abstract—Handover management plays a vital role in load
balancing by strategically transferring users from overloaded
base stations to less congested stations, ultimately optimizing
network performance. This paper proposes a novel handover
management solution that leverages a two-layer cascaded fuzzy
logic controller (FLC) for enhanced load balancing efficiency.
The first layer focuses on signal quality evaluation for both
the serving and target base stations. It employs separate fuzzy
inference systems that consider reference signal received power
(RSRP) and signal-to-interference-plus-noise ratio (SINR) to
assess overall signal quality. This information is then fed into
the second layer. Here, the FLC analyzes four key inputs: load
levels of both the serving and target base stations, alongside
the signal quality for each (obtained from the first layer’s
output). By employing a hierarchical architecture, the cascaded
FLC significantly reduces the number of fuzzy rules required
for decision-making, leading to faster processing and improved
system performance. Simulations indicate the proposed FLC
solution efficiently associates 80% of users with less congested
stations (below 50% load level), ultimately increasing network
capacity by up to 51.39% compared to competitive algorithms.

Index Terms—handover, handover optimization, load balanc-
ing, fuzzy logic, heterogeneous networks, TOPSIS.

I. INTRODUCTION

The explosion of smart devices and data-intensive applica-
tions fuels the demand for ultra-high data rates and exceptional
user experience in mobile broadband services [1]. To meet
this demand, 6G networks are envisioned as highly dynamic,
densely deployed, and heterogeneous networks (HetNets).
While millimeter wave (mmWave) frequencies offer the vast
bandwidth needed for these ultra-high data rates, mmWave
links are susceptible to rapid signal variations and blockages
due to their high frequency [2]. To address these limitations
and ensure satisfactory service quality, ultra-dense deployment
of mmWave base stations is proposed [3].

Small base stations in HetNets play a crucial role in
enhancing network capacity, filling coverage gaps, and alle-
viating congestion in overloaded areas. This benefit can be
undermined, however, by traditional user association schemes
based solely on received signal strength, which can lead to
significant load imbalance. This is because macro base stations
typically have higher transmit power compared to small base
stations, leading users to connect to the strong macro base
station signal even when a nearby small base station might
offer better overall network performance [4]. This results in
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underutilized resources in small base stations, hindering their
potential to alleviate network congestion. Conversely, users
associated with overloaded macro base stations experience
lower data rates due to resource scarcity. To address this
inefficiency, some users in overloaded cells may need to
be transferred to a different base station that offers more
resources despite a slightly weaker signal strength and some
interference from the previously connected base station. Load
balancing acts as a network equalizer, dynamically managing
user associations in real-time based on a comprehensive set of
criteria, including network congestion and factors impacting
signal strength. This ensures optimal resource utilization and
a more balanced network load.

Handover, or user association management, ensures seam-
less user experience in dynamic networks. It triggers connec-
tion transfers to suitable target stations based on factors like
fluctuating signal strength, network congestion, or stronger
nearby signals. The key challenge lies in determining the
optimal handover moment and target base station selection.
This requires balancing sufficient base station capacity (han-
dling user demands) with strong signal strength for a seamless
connection. Selection based on broader criteria like load level
and signal quality is demonstrably more efficient than relying
solely on received signal strength (RSRP) [5], [6].

Handover decision determines the precise moment for
transition, ensuring a seamless and efficient handover while
minimizing unnecessary handovers that can degrade user ex-
perience. Traditional handover decision methods often rely on
fixed thresholds for various network metrics. These methods
can struggle to account for the inherent uncertainty of network
conditions. Fuzzy logic stands out as a powerful tool for
handover decision-making due to its ability to effectively
address this challenge.

In fact, number of research studies have explored the use of
fuzzy logic for handover decision control in wireless networks.
For example, the authors in [8] investigate load balancing
in satellite-terrestrial integrated networks using a fuzzy logic
controller (FLC). This FLC employs a 125-rule adaptive
neuro-fuzzy system to pre-evaluate user impact on overload,
considering signal reception, user equipment (UE) speed, and
data requirements. This system further integrates reinforce-
ment learning for access control to proactively prevent network
overload. The paper [9] addresses the conflict between mobil-
ity robustness and load balancing in handover decision-making
by proposing a fuzzy-coordinated self-optimizing scheme uti-
lizing a FLC with three input parameters: SINR, load level,



and UE speed. A study in [10] also exploits the FLC based
on RSRP, reference signal received quality (RSRQ), and UE
speed to set appropriate handover margins. The fuzzy logic
system employed 36 rules for decision-making. Simulation
results demonstrate that the proposed algorithm suppresses
handover ping-pong effects, maintaining them below 1% in all
investigated scenarios. In [11], the authors leverage fuzzy logic
for dynamic handover margin determination based on both the
UE’s signal-to-interference plus noise ratio (SINR) and the rate
of its change. This fuzzy logic system employs 9 rules. The
paper [12] propose a fuzzy logic algorithm for dynamically
adjusting handover margin and time-to-trigger based on RSRP,
RSRQ, and UE speed. Another study in [13] proposes a
FLC with 36 rules for handover decision-making. This FLC
leverages three key parameters: RSRP, SINR, and the load
level difference between the serving and target base stations.
In addition to the FLC-based solutions explored in [8]–[13],
the study in [14] proposes a conditional handover decision
algorithm. This algorithm utilizes RSRP as a handover trigger
and assigns a bias based on the target base station type and
resource availability. A heuristic approach for user association
decisions based on RSRP, SINR, and available resource blocks
is proposed in [15].

Unfortunately, the current single-layer FLC approaches [8]–
[13] face several challenges in highly complex 6G network
environments due to the inherent trade-off between accuracy
and interpretability in FLC systems. These challenges can be
summarized as:

• FLC systems with a limited number of rules prioritize inter-
pretability, making them easier to understand and manage.
However, this simplicity can limit their ability to capture
the nuances of handover decisions in 6G scenarios.

• Single-layer FLCs with limited rules may struggle to adapt
to the dynamic nature of 6G networks, i.e., networks that are
expected to experience rapid changes in traffic patterns, user
mobility, and network conditions. Limited rule sets might
not be able to capture these dynamic changes effectively.

• While single-layer FLCs with a large number of rules can
achieve higher accuracy, this increased complexity presents
challenges. The ”explosion of rules” makes the system
difficult to interpret and maintain. This complexity can also
limit its scalability for real-world deployments, especially
in resource-constrained environments. Besides, large rule
sets require more processing power and memory, which can
be scarce on network devices with limited computational
resources.

To address the limitations of single-layer FLC approaches,
we propose a novel cascaded FLC framework. By dividing
the decision process into manageable stages, this cascaded
FLC significantly reduces the number of rules, overcoming
a key challenge faced by single-layer systems. This strategic
design achieves a balance between accuracy and efficiency,
making the FLC more interpretable and suitable for real-world
6G networks. The proposed hierarchical model leverages two
distinct fuzzy inference systems – Mamdani [16] in the first
layer and Takagi-Sugeno [17] in the second layer – to cater
to the specific requirements of each stage in the handover

decision process. The first layer evaluates overall signal quality
for both serving and target base stations using RSRP and SINR
as fuzzy inputs. The second layer, then, determines handover
necessity based on load and signal qualities of serving and
target base stations. By strategically combining these systems,
the cascaded approach achieves a significant reduction in
complexity and accelerates the inference process compared
to traditional single-layer systems. This improvement in ef-
ficiency is crucial for ensuring seamless and timely handover
decisions. Building upon this cascaded FLC framework, we
further enhance the handover decision process by integrating
a target base station selection approach that leverages the
technique for order preference by similarity to ideal solution
(TOPSIS) algorithm. The TOPSIS algorithm enables the se-
lection of the optimal target base station based on three key
criteria: RSRP, SINR, and load level. TOPSIS offers faster
decision-making due to its deterministic nature, ideal for real-
time applications in dynamic 6G environments. This advantage
stems from its efficiency compared to traditional methods
reliant on exhaustive search or complex calculations [7]. The
proposed solution efficiently associates 80% of users with sta-
tions experiencing load levels below 50%, ultimately leading
to increased network capacity by up to 51.39% compared to
the competitive algorithms.

The present paper is organized as follows: Section II lays
the groundwork for this study by establishing the simula-
tion model and formulating the key problem that is being
addressed. Section III outlines the proposed cascaded FLC
framework. Section IV entails an analysis and discussion of
the simulation results, while Section V provides an overview
of the study’s conclusions.

II. SYSTEM MODEL AND PROBLEM FORMULATION

This section describes the network model, channel model,
traffic load model, target base station selection based on
TOPSIS decision engine, and lastly also formulate a problem.

A. Network model

We consider a two-tier network consisting of the macro base
stations (MBSs) and the small base stations (SBSs), as shown
in Fig. 1. In this network, we denote M and N as the set of
MBSs and SBSs, respectively. Let J represent the combined
set of all base stations, defined as J = M ∪ N . The MBSs
and SBSs operate in separate frequency bands (sub-6 GHz for
MBS and mmWave for SBS) to avoid interference between
them. Let I denote the set of UEs in the network. During the
movement of the UEs, handovers are performed to keep the
UE connect to a suitable base station. The base stations use the
Xn interface to communicate with one another to share control
information during the handover process. Each UE can only
be associated with one base station (MBS or SBS) at a time,
while each base station can serve several UEs simultaneously.

B. Channel model

We define xij = 1 as a binary association indicator, where
xij = 1 if user i is associated with base station j, and 0
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Fig. 1: Illustrative example of the network model.

otherwise. Then, the SINR received by user i from base station
j is denoted by γij

γij =


Pjgijxij

σ2+
∑

k∈N,k ̸=j Pkgik
, if j ∈ N

Pjgijxij

σ2+
∑

k∈M,k ̸=j Pkgik
, if j ∈ M

(1)

where Pj is the transmit power of base station j and gij
is the channel gain from base station j to user i, the term∑

k∈(MorN),k ̸=j Pkgik represents the co-channel interference
from other base stations, Pk is the transmit power of the
base station k representing the interference to the user i, gik
corresponds to the channel gain between the user i and the
interfering base station k, and σ2 represents the noise power.

The achievable channel capacity between base station j and
user i is calculated as follows:

Cij = Bij log(1 + γij) (2)

where Bij represents the bandwidth allocated by base station
j to user i.

C. Traffic load model

To capture resource utilization, we define ρj (traffic load
level for base station j) as:

ρj =
Rutilized

j

Rtotal
j

(3)

where Rutilized
j and Rtotal

j represent the utilized and available
radio resources in base station j, respectively. This normaliza-
tion allows for a comparative assessment of traffic load across
base stations with different capabilities.

D. Target base station selection with TOPSIS decision engine

TOPSIS, a multi-criteria decision-making method, is well-
suited for target base station selection due to its ability
to consider multiple performance metrics [18]–[20]. This is
achieved through a decision matrix, denoted as D = [ dj,p],
where each row (j) represents a potential base station and
each column (p) represents a network performance metric
(e.g., RSRP, SINR, and load level of potential base stations).
This matrix allows for a side-by-side comparison of potential
targets. Since these criteria might be measured on different

scales (e.g., RSRP in dBm, load level as a percentage, SINR
in dB), the decision matrix is normalized to ensure all criteria
contribute equally to the evaluation. Next, TOPSIS defines
two theoretical points within this multi-dimensional space: the
Positive Ideal Solution (PIS) and the Negative Ideal Solution
(NIS). PIS represents a hypothetical potential target base
station with ideal values for all criteria (highest possible RSRP,
lowest possible load level, highest possible SINR). Conversely,
NIS embodies the opposite extreme, with the lowest possible
RSRP, highest possible load level, and lowest possible SINR.

TOPSIS employs a mathematical concept of distance to
measure how close a target station’s performance metrics (like
RSRP, SINR, and load level) align with the ideal (PIS) and
how much they deviate from the worst-case (NIS) scenario.
Finally, TOPSIS combines these distances into a single score
called the Similarity to Ideal Solution (SIS). Higher SIS scores
indicate target stations closer to the ideal scenario. By ranking
stations based on their SIS scores, TOPSIS facilitates the
selection of the optimal target base station for handover, the
one with the best combination of these performance metrics.

E. Problem formulation

This paper aims to maximize the sum capacity of the
network through an efficient handover process. We formulate
the problem of the sum capacity maximization as follows:

max
x

∑
i∈I

∑
j∈J

Cij (4a)

subject to:
∑
j∈J

xij = 1, ∀i ∈ I (4b)

xij ∈ {0, 1}, ∀i ∈ I, ∀j ∈ J (4c)
cij ≥ cthr, ∀j ∈ J∀i ∈ I (4d)
ρj ≤ 1, ∀j (4e)

The formulated problem considers four constraints: 4b ensures
that each user is associated with only one base station at a time,
4c defines the association indicator, xij , is a binary variable
that takes a value of 1 when the association between base
station j and user i is active and 0 otherwise, 4d guarantees
that the channel capacity between base station j and user i is
not lower than the threshold capacity, and 4e imposes the load
level of each base station j to be not larger than 1.

III. PROPOSED CASCADED FLC FRAMEWORK

A crucial step in fuzzy logic systems involves determining
the optimal number of fuzzy linguistic sets for each input vari-
able. These sets, representing various parameters like signal
strength, influence the system’s decision-making granularity.
More sets allow for nuanced control over the handover pro-
cess but can lead to an explosion of fuzzy rules, increasing
complexity and potentially hindering real-time applications.
Conversely, too few sets can limit the system’s ability to
handle the dynamic and uncertain nature of wireless networks,
potentially compromising accuracy.

Our fuzzy model leverages three key metrics to optimize
handover decisions: RSRP, SINR, and base station load level.
The RSRP variations are monitored as users move across



the network to determine the optimal timing for initiating
handovers, ensuring a seamless connection with satisfactory
signal quality. The SINR complements RSRP by providing
a more nuanced perspective. It considers the strength of
the desired signal relative to the combined interference and
background noise, offering a more accurate picture of signal
quality. Finally, load level analysis helps identify base stations
experiencing heavy traffic and prioritize handovers to those
with lower congestion levels. We monitor these metrics for
both the serving and target base stations, resulting in six
distinct input variables for the fuzzy model.

For fuzzification, all collected attribute values are mapped
to the corresponding fuzzy sets through the membership
functions. These membership functions define the degree of
an input value’s belonging to a particular fuzzy set. The
membership functions of all three attributes are defined us-
ing triangular membership functions. Triangular membership
functions are a popular choice in fuzzy logic systems due to
their simplicity and ease of computation [21]. For all these
attributes, we define the intervals and granularity of these
parameters based on experience and the ranges of values
commonly expected in mobile networks, e.g., as assumed in
3GPP [22]. The following fuzzy states are defined for each
attribute:

• RSRP – denoted as µRSRP

µRSRP =


Low for -160 to -95 dBm
Moderate for -100 to -73 dBm
High for -80 to -20 dBm

(5)

• SINR – denoted as µSINR

µSINR =


Low for -60 to 1.5 dB
Moderate for 0 to 14.5 dB
High for 13 to 20 dB
Very High for 18.5 to 30 dB

(6)

• Load level – denoted as µLL

µLL =


Low for 0 to 0.35
Moderate for 0.3 to 0.65
High for 0.6 to 1

(7)

After fuzzifying each input attribute, the resulting fuzzified
values are forwarded to the inference engine to derive the
fuzzy output. Within the inference engine module, a set of IF-
THEN rules is constructed to encapsulate the decision-making
logic for handover. Despite its effectiveness in capturing the
multifaceted nature of handover decisions, employing a single
fuzzy inference system to process all six input variables
(RSRP, SINR, load level for both serving and target base
stations) presents a practical challenge. The model’s strength
lies in its ability to consider the complex interplay between
these parameters using fuzzy logic. However, this very strength
translates to a significant computational burden. To represent
the various relationships within the knowledge base, a sub-
stantial number of fuzzy rules would be required. Specifically,
considering RSRP, SINR, and load level attributes, each with
their respective fuzzy linguistic sets for both serving and target

TABLE I: Fuzzy rules of the first layer.

Rule RSRP SINR Signal Quality
1 Low Low Low
2 Low Moderate Low
3 Low High Moderate
4 Low Very High Moderate
5 Moderate Low Low
6 Moderate Moderate Moderate
7 Moderate High High
8 Moderate Very High High
9 High Low Low
10 High Moderate Moderate
11 High High High
12 High Very High High

base stations, the total number of possible rule combinations
is calculated as 32 × 42 × 32 = 1296. Here, 3 represents
the number of fuzzy linguistic sets for RSRP and load, while
SINR utilizes 4 sets, and exponents represent the number of
fuzzy sets per attribute (serving and target base stations have
the same attributes, so we square the number of fuzzy sets).
This significant number arises from the combination of input
features and the fuzzy sets used to represent these features.
Manually adjusting these numerous rules to maintain optimal
performance becomes increasingly difficult and error-prone for
human experts. To address the limitations of complex fuzzy
rule sets, we propose a hierarchical fuzzy inference system
(depicted in Fig. 2). This system utilizes three cascaded FLCs
to make a final handover decision.

Signal Quality FLC (First layer): This layer employs two
separate Mamdani-type fuzzy inference systems to evaluate
the overall signal quality for both the serving and target base
stations. Each system focuses on a qualitative concept, making
Mamdani-type fuzzy inference systems a suitable choice due
to their ability to effectively represent qualitative information
like signal strength. Their fuzzy outputs, in the form of
membership degrees, provide a natural and interpretable way
to assess this concept. We opted for three linguistic sets (Low,
Moderate, High) to represent signal quality. This choice strikes
a good balance between capturing essential variations in signal
strength and maintaining interpretability within the cascaded
model. While a higher number of levels might offer finer
granularity, it could potentially complicate the rule base and
introduce redundancy in this specific two-layer architecture.

A Mamdani-type fuzzy inference engine, based on 12 fuzzy
rules listed in Table I, processes the two signal quality-related
inputs. Signal Quality FLC generates a fuzzy output that

Signal Quality FLC 

Serving BS 

RSRP

Serving BS 

SINR

1st layer 

(Mamdani)

Target BS 

RSRP

Target BS 

SINR

1st layer 

(Mamdani)

Signal Quality FLC 

Serving BS 

Signal 

Quality

Target BS 

Signal 

Quality

2nd layer 

(Takagi-Sugeno)

Serving BS 

Load Level

Target BS 

Load Level

Handover 

Decision

Handover Decision FLC 

Fig. 2: Block diagram illustrating the proposed cascaded FLC
system.



represents the overall signal quality for the respective base
station (either the serving base station or the target base
station). These three sets correspond to the attribute signal
quality. Finally, the fuzzy output is used in a process called
defuzzification to generate a real-valued score in the range of
{0, 1} for evaluating the signal quality of the respective base
station. This defuzzification process leverages the membership
functions (same membership function as load level) that define
the fuzzy sets used for signal quality assessment.

Handover Decision FLC (Second layer): This layer takes
into account four attributes: load level of the serving base
station, load level of the target base station, signal quality
of the serving base station, and signal quality of the target
base station (obtained from the output of the first layer,
Signal Quality FLC). To ensure seamless user experience
and maximize system capacity in 6G networks, this layer
prioritizes two critical aspects for handover decisions: signal
quality and network load. The handover decision FLC con-
tinuously monitors signal, triggering handovers for significant
degradation to maintain high-quality connections. Addition-
ally, this layer considers network congestion. By strategically
initiating handovers to less congested base stations, the han-
dover decision FLC achieves a more balanced distribution
of network resources. The critical function of this layer is
determining the necessity of a handover. Here, the need for
clear and actionable outputs takes precedence. Takagi-Sugeno
fuzzy inference systems provide crisp output values, making
them ideal for triggering actions like handover initiation.
Their linear output functions also contribute to improved
computational efficiency in this layer, which is crucial when
dealing with multiple input variables (load levels and signal
qualities). Since ”no handover” is the default decision, we
focus primarily on handover-triggering rules within the Takagi-
Sugeno framework. Through simplification and consolidation,
a knowledge base for this layer is established with 11 fuzzy
rules. These rules are presented in Table II.

Employing a hierarchical architecture demonstrably en-
hances the efficiency of the fuzzy inference system. This
approach significantly reduces both the complexity and pro-
cessing time required for decision-making. By leveraging this
hierarchical structure, the final rule set is streamlined to 35

TABLE II: Fuzzy rules of the second layer. These abbrevia-
tions are used in the table: ServSQ - serving base station signal
quality, ServLL - serving base station load level, TarSQ -
target base station signal quality, TarLL - target base station
load level, HO - handover.

Rule ServSQ ServLL TarSQ TarLL HO Decision
1 Low Moderate Low HO
2 Low Moderate Moderate HO
3 Low High Low HO
4 Low High Moderate HO
5 High Moderate Low HO
6 High Moderate Moderate HO
7 High High Low HO
8 High High Moderate HO
9 High Low No HO
10 Low High No HO
11 Moderate High Low HO

rules, a substantial decrease compared to the 1296 rules
needed in a non-hierarchical architecture. This reduction in
complexity translates to faster processing and improved system
performance.

IV. SIMULATION MODEL

We performed simulations in MATLAB to assess the per-
formance of the proposed model. The MBSs and SBSs are
deployed in a uniform grid pattern along the highway. This
simulation model incorporates two types of UEs: stationary
and mobile. The number of stationary UEs at each base station
is dynamically adjusted to emulate random traffic patterns.
The mobile UEs move along a straight line to mimic the
movement of vehicles on highways. To evaluate the handover
decision system under dynamic traffic conditions, 15 mobile
UEs are chosen. For the first simulation cycle, 15 mobile UEs
are randomly distributed along the highway segment. During
each simulation cycle, all mobile UEs move along the highway
segment at a constant speed in a predetermined direction. Note
that simulations are done for 2000 simulation cycles. Each
simulation cycle independently evaluates user performance.
The reported results represent the average performance metrics
measured across all mobile UEs throughout the entire simula-
tion. A summary of the key simulation parameters is provided
in Table III.

The performance of the proposed solution is compared with
four existing schemes: [13] (labeled as ”Conventional”), [14]
(labeled as ”Conditional”), and [12] (labeled as ”Single layer
FLC”), and [15] (labeled as ”Heuristic”).

V. PERFORMANCE EVALUATION AND DISCUSSION

Fig. 3a illustrates the average serving base station load levels
across various UE speeds. The proposed solution achieves
reductions in average serving base station load level of 5.83%,
10.21%, and 11.37% for UE speeds of 40 km/h, 80 km/h, and
120 km/h, respectively, compared to the conventional algo-
rithm (provide second-lowest average load level). However,
Fig. 3a provides limited insight into the actual distribution of
load levels throughout the network. To address this limitation,
Fig. 3b presents the cumulative distribution function (CDF) of
load levels achieved by the proposed solution and competitive
handover algorithms. The CDF plot allows us to determine the
probability of encountering various serving base station load
levels. Fig. 3b indicates that 80% of users associated with base
stations are served by stations with load levels below 50% by

TABLE III: Parameters used in the simulation model [23]–
[25].

Parameter Value
MBS SBS

No. of base station 39 117
Carrier frequency (GHz) 2.1 28
System bandwidth (MHz) 20 500
TX power (dBm) 46 30
Shadowing standard deviation (dB) 6 7.8
UE’s speed (km/h) 40, 80, 120
HO preparation time (ms) 50
HO execution time (ms) 40
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Fig. 3: Average serving base station load levels for different
UE speeds (a) and CDF of serving base station load levels (b).

the proposed solution. These results highlight the effectiveness
of the proposed solution in achieving fair resource allocation
and enhancing overall network performance.

Fig. 4 presents the average capacity for each mobile speed
scenario, considering all mobile UEs and simulation cycles.
The proposed solution achieved the highest average capacity in
all mobile speed scenarios. The proposed solution outperforms
the conventional algorithm (achieved second-highest average
capacity) across various mobile speed scenarios (40 km/h,
80 km/h, and 120 km/h). These improvements are 15.30%,
51.39%, and 40.57%, respectively.

The proposed cascaded FLC, in conjunction with the
TOPSIS algorithm for selecting optimal target base stations,
ensures robust connections and efficient resource allocation
by triggering handovers for deteriorating signal quality and
balancing network load. This ultimately maximizes network
capacity.

VI. CONCLUSION

This paper introduces a novel multi-criteria cascaded FLC
for efficient handover management in dynamic 6G networks,
incorporating load balancing considerations. The proposed
cascaded FLC tackles complex decision-making by dividing
the process into two layers. The first layer evaluates signal
quality for both the serving and target base stations. The
second layer, leveraging the results from the first, prioritizes
signal quality and load balancing to determine the necessity
and suitability of a handover. This cascaded approach sig-
nificantly reduces the number of rules required, leading to
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faster processing and improved efficiency in decision-making.
Our simulations demonstrate that the cascaded FLC effectively
balances network load by strategically initiating handovers
to less congested base stations, resulting in improved overall
network capacity.
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