
Computational Offloading for Autonomous
Systems: Real-World Experiments and Modeling

Jan Danek, Zdenek Becvar, and Adam Janes
Faculty of Electrical Engineering Czech Technical University in Prague, Prague, Czech Republic

danekja5@fel.cvut.cz, zdenek.becvar@fel.cvut.cz, janesada@fel.cvut.cz

Abstract—We focus on computation offloading from moving
devices, such as mobile robots or autonomous vehicles to Multi-
Access Edge Computing (MEC) servers via mobile network.
To this end, we develop and implement a prototype of small
autonomous vehicle with capability to offload processing of sensor
data to MEC server via mobile network. Then, we investigate an
impact of communication channel on delay and energy consumed
by the autonomous vehicle for two practical applications, namely
road sign recognition and path planning, in the real-world
environment with a real physical equipment. Via experiments,
we demonstrate benefits of the computation offloading on both
energy and delay. The experiments highlight the potential of
MEC for the autonomous systems allowing to reduce cost and
increase scalability of such autonomous systems. Furthermore,
based on the real-world experiments, we derive detailed models
of energy consumption and delay for both practical applications.

Index Terms—Multi-access edge computing, mobile network,
autonomous driving, robots, testbed, autonomous systems.

I. INTRODUCTION

The autonomous systems require efficient real-time data
processing to ensure safe and reliable operation in dynamic
environments [1]. The computational demands of autonomous
operation algorithms impose a high demand on onboard
computing units (CPUs) [2] while deploying powerful CPUs
increases costs of the autonomous systems. To address this,
offloading a part of the data processing to multi-access edge
computing (MEC) servers located near base stations (BS)
offers a cost-effective solution while maintaining real-time
performance [3]. The offloaded computation to a powerful
servers allows to reduce computing (processing) delay. Conse-
quently, despite a non-zero communication delay for a transfer
of the computation from a device to the MEC server, the
overall task processing delay (including both communication
and computing delays) can be reduced.

The offloading of computation to MEC servers has been
extensively studied for various applications [4]. For instance,
recent papers focuses on optimizing the task processing in
MEC servers to increase the number of processed tasks [5],
or focuses on optimizing the task processing in MEC servers
to increase sensing rate of data from sensors and sensor’s data
subsequent processing [6]. These works provide insights into
the design of MEC systems for general use cases, but do not
address the requirements of autonomous systems, namely these

This work was supported by Ministry of Education, Youth and Sport of
the Czech Republic under Grant no. LUASK22064, and by Czech Technical
University in Prague no. SGS23/171/OHK3/3T/13.

works do not consider overall task processing delay critical to
ensuring real-time response of the autonomous systems.

Furthermore, works [7], [8] target to minimize overall task
processing delay by optimizing the task placement (local
computation of offloading) and resource allocation. Similarly,
also the paper [9] investigates delay-sensitive task offloading.
However, the works on overall task processing delay mini-
mization are based on optimistic and simplified models often
lacking real-world validation and neglecting critical factors
necessary for robust autonomous system operation, such as
real-time execution.

The solution for autonomous systems is developed in [10],
where the authors target to minimize energy consumption and
overall task processing delay for autonomous vehicles. Fur-
thermore, the paper [11] examines MEC-assisted autonomous
driving. While these papers provide interesting insights into
leveraging MEC for autonomous systems, namely autonomous
vehicles (AVs), these papers rely on theoretical simplified
models an evaluate performance in optimistic and controlled
simulation environment, failing to capture the challenges of
dynamic real-world environment.

In this paper, we aim to demonstrate the feasibility of
computation task offloading from the autonomous systems to
the MEC server. We focus on processing of data from onboard
sensors of the AV and we evaluate an ability to process various
types of AV’s tasks on the MEC server. We focus on practical
aspects of the computation offloading from the AV to the MEC
servers over the mobile network. The major contributions of
this paper consists in following:

1) We develop and implement a prototype of a model of the
AV with capability to offload computation (processing)
of onboard sensors to the MEC server via the mobile
network.

2) We implement two AV applications: i) road signs recog-
nition, and ii) path planning, as examples of computa-
tion heavy applications for potential offloading to MEC
servers.

3) We demonstrate benefits of the offloading for both
implemented applications in term of energy saving and
overall task processing delay reduction if the offloading
is enabled. To this end, we perform a series of real-world
experiments with realistic data and equipment.

4) Based on the experiments, we derive mathematical mod-
els for energy consumption and overall task processing
delay for both applications (road sign recognition and



path planning) to allow future theoretical research to be
done with realistic models of AV applications.

5) We make the open-source code for all aspects of the
developed AV and experiments publicly available on
GitLab1 for future research contributing to transparency
and reproducibility of the work.

The rest of the paper is organized as follows. First, we
outline a model of the system considered in this paper.
Then, in Section III, we provide details on the AV and its
integration with the mobile network and with the MEC server
and we also describe adopted path planning and road sign
recognition algorithms. In Section IV, we outline the scenario
for experiments. Then, in Section V, we describe results of
experiments and define models of the energy consumption and
overall task processing delay for both path planning and road
sign recognition. Last, Section VI concludes the paper.

II. SYSTEM MODEL

In this section, we introduce modelling of the computation
offloading from the autonomous system, represented by the
AV, to the MEC server via the mobile networks. We also define
the overall task processing delay and energy consumption
related to both offloading and local computing.

We assume the system with one AV and one BS, see Fig. 1.
The BS is enhanced with the MEC server allowing to process
computing tasks related to the autonomous driving, such as
path planning or road sign recognition.

Each computing task is characterized by a volume of data
Dul to be transferred from the AV to the MEC server for the
task offloading, by the volume of the task processing result
Ddl transferred from the MEC server to the AV, and by the
computational demand CD of the task generated by the AV.

The computing task can be processed either locally in CPU
of the AV with the computing power CAV or offloaded to
the MEC server with the computing power CMEC . The MEC
server is equipped with a common CPU with a computation
power CCPU and with a graphical processing unit (GPU) with
a computing power CGPU . The overall computing power of
the server is then defined as a sum of computing powers of
both components, i.e., CMEC = CGPU + CCPU .

We define a binary variable σ indicating whether the task
is processed locally on the AV (σ = 0) or offloaded to the
MEC server (σ = 1). The communication between the AV
and the BS is characterized by downlink bitrate bdl and uplink
bitrate bul. We assume the mobile network to be adopted for
AV’s communication, hence, the bitrates in both directions
results from adopted modulation, coding rate, and the number
of resource blocks allocated to the AV [12]. Thus, the uplink
bitrate bul is defined as:

bul = NRB
ul ×Nsubcarriers

ul ×N bits
ul ×Ns

ul × CRul, (1)

where NRB
ul is the number of used resource block,

Nsubcarriers
ul is the number of subcarriers per resource blocks,

N bits
ul denotes the number of bits per symbol according to the

1https://gitlab.fel.cvut.cz/mobile-and-wireless/autonomous-driving

Fig. 1: System model with AV either computing/processing
sensor data locally or offloading the computation to MEC
server via mobile network.

selected modulation, Ns
ul represents the number of symbols

transmitted per second, and CRul, is the code rate. The
expression for bitrate bdl in downlink is same as for the uplink,
just the uplink parameters NRB

ul , Nsubcarriers
ul , N bits

ul , Ns
ul,

CRul substituting the related downlink parameters.
The communication delay tcn for the n-th task includes the

uplink communication time tuln = Dul

bul
for offloading the task

to the MEC server and the downlink communication time
tdln = Ddl

bdl
for transferring the result back to the AV, i.e.,:

tcn = σ ×
(
tuln + tdln

)
= σ ×

(
Ddl

bdl
+

Dul

bul

)
. (2)

The computing delay tpn of the task on the MEC server or
locally in the AV is determined as:

tpn = σtMEC
n + (1− σ)tAV

n = σ
CD

CMEC
+ (1− σ)

CD

CAV
, (3)

where tMEC
n = CD

CMEC
is the computing time on the MEC

server and tAV
n = CD

CAV
is the computing time on the AV.

The overall task processing delay ton is defined as the total
time required to process the n-th task locally or offloaded to
MEC server and includes both computing delay and commu-
nication delay, i.e.,

ton = tpn + tcn. (4)

Since the autonomous system can be energy constrained,
e.g., in case of the robots or AVs, we define the overall energy
consumption Eo

n of the AV for the n-th task processing as:

Eo
n = σ (Ep

n + Ec
n)+(1−σ)Ep

n = σton (Pp + Pc)+(1−σ)tonPp,
(5)

where Ep
n = tonPp is the computing energy consumed by the

CPU of the AV, Ec
n = tonPc denotes the communication energy

consumed to transmit the data from the AV to the MEC server,
Pp and Pc represent the power consumed by the CPU on the
AV and by the AV’s communication modem, respectively.

III. SYSTEM DESIGN AND IMPLEMENTATION OF
AUTONOMOUS VEHICLE FRAMEWORK

In this section, first outline the whole system for offloading
of tasks form the autonomous system, represented as AV,
to the MEC server. Then, we describe a developed model
of autonomous system represented as AV for experiments
from the perspective of key building blocks and components.
Afterwards, we present an integration of the MEC server and
communication infrastructure to the system. Then, we also

https://gitlab.fel.cvut.cz/mobile-and-wireless/autonomous-driving


(a) (b)

Fig. 2: Model of AV (a) and block scheme of AV and key
components for driving, communication, and computing (b)

describe two implemented offloadable applications for AVs,
namely: i) the rapidly exploring random trees star (RRT*) [13]
algorithm for path planning and ii) road sign recognition based
on neural networks.

A. Overview of implemented system for computation offload-
ing from AV to MEC via mobile networks

The whole implemented system follows the model presented
in Fig. 1. The AV generates tasks essential for driverless
operation, including path planning using RRT* algorithms and
road sign recognition via neural networks [14]. Sensor data,
collected from a camera and Light Detection And Ranging
(LiDAR), is processed by the AV’s computer running the
Simultaneous Localization and Mapping (SLAM) algorithm
[15]. SLAM creates a grid map [15] of the environment using
LiDAR data and localizes the AV’s current position. The grid
map consists of nodes [15], representing discrete points that
indicate whether a location is occupied by an object.

During operation, the AV plans a feasible path in the map
and captures images to recognize road signs. To reduce the
computational load on onboard hardware, tasks can either be
offloaded to the MEC server or processed locally on the AV’s
computer. The outputs from the path planning and the road
sign recognition are inserted to the control algorithm of the
AV to navigate the AV in the environment.

B. Implementation of autonomous vehicle

The developed AV is based on a 1:10 scale model of
the Mercedes-Benz G63 with a TRX-6 chassis, as shown
in Fig. 2a, and is controlled using Robot Operating System
(ROS)2. Key components include motors, LiDAR, camera,
AV’s computer, microcontroller, 5G modem, and batteries,
detailed in Fig. 2b.

The LiDAR scans the environment, providing data for
SLAM to localize the AV and creates a map of environment.
The SLAM runs in the AV’s computer. The camera, connected
via USB, captures images for road sign recognition. The motor
controls forward and backward movement of AV, while the
servomotor controls turning via the front axle. The motor’s
speed is controlled by the regulator. The actions for the

2https://www.ros.org

regulator to control motor and servomotor are determined
by the AV’s computer and sent via a microcontroller, which
facilitates an execution of the actions by the motor and the
servomotor.

The communication, allowing the computing tasks to be
offloaded to the MEC server, is facilitated by a 5G modem.
For local computing, tasks are processed directly on the AV’s
computer. The AV’s computer, LiDAR, and 5G modem are
powered by a power bank, while the motors and servomo-
tors use a LiPo battery. Note that detailed specification of
individual components and details on their interconnection
are available on GitLab repository3. Additionally, the control
codes for the AV are also accessible on our GitLab repository.

C. Integration of MEC server and communication infrastruc-
ture

In this subsection, we describe communication infrastruc-
ture and MEC server integration to the system, see Fig. 3.

For local computing, sensor data is processed directly on
the AV. For MEC server processing, sensor data and SLAM
outputs are transmitted to the MEC server via a software-
defined mobile network, using the modem located on the
AV. The mobile network is implemented using OpenAir-
Interface4 (OAI), an open-source platform widely used for
mobile network experimentation. The network consists of a
BS, implemented with a USRP N310 software-defined radio
and a connected computer running the OAI. The second part
of the mobile network is a core network, running on a separate
computer and managing the mobile network.

Tasks are processed within Docker5 containers, which en-
capsulate code for the task processing and code’s dependen-
cies. This containerization ensures isolation between tasks,
preventing conflicts and allowing multiple tasks to run inde-
pendently on the MEC server. Furthermore, Docker containers
provide scalability in the MEC server system.

The MEC server operates as a stand-alone server and is
connected to the BS via a wired local area network (LAN).

D. Applications for offloading

In this section, we describe two applications generating
computing tasks for offloading, i.e., RRT* for path planning
and neural networks for road sign recognition.

1) Path planning RRT* algorithm: The RRT* algorithm
[13] is an efficient path-planning algorithm commonly used
for navigation of autonomous systems, respectively AV, in a
high-dimensional space by incrementally constructing a tree,
containing all feasible paths from the AV’s start position,
through random sampling, to a AV’s final position. The RRT*
is fed with the environment map, AV’s current position from
SLAM, and the destination. Based on these inputs, the RRT*
returns a feasible path as an output.

The RRT* algorithm starts at the AV’s position and it-
eratively samples random points to extend the path towards

3https://gitlab.fel.cvut.cz/mobile-and-wireless/autonomous-driving
4http://www.openairinterface.org/
5https://www.docker.com

https://www.ros.org 
https://gitlab.fel.cvut.cz/mobile-and-wireless/autonomous-driving
http://www.openairinterface.org/
https://www.docker.com


Fig. 3: Flow of data from sensors of AV to driving control
algorithm of AV for offloading to MEC server and for local
data processing in AV.

each new point while minimizing the path cost and avoiding
obstacles. The RRT* considers the AV’s kinematic constraints,
such as turning radius, ensuring practical paths.

2) Road sign recognition: As described in [14], road sign
recognition involves two stages: detection and classification.
The detection stage identifies the bounding box of a road
sign within an image captured by the AV’s camera, while the
classification stage categorizes the road sign in the cropped
image, cropped by founding bounding boxes.

For detection, we use You Only Look Once version 3
(YOLOv3) [16], chosen for its high precision and low compu-
tational demands compared to alternatives such as Single Shot
Detection [17] or Faster R-CNN [17]. Our implementation is
based on a GitHub repository6.

To prevent overfitting, the training process applies trans-
formations such as flipping, brightness/contrast adjustments,
and noise addition. Inputs include transformed images and
annotated bounding boxes of road signs. We use the Adaptive
Moment Estimation (ADAM) optimizer [18] with a learning
rate of 5× 10−5 and weight decay of 5× 10−4. The original
loss function from [16] is employed, excluding classification
loss, since only one class (road signs) is recognized. We create
our own dataset for training to fit our experiments needs.
This dataset is captured and annotated on Czech Technical
University in Prague. Dataset is available on GitHub7.

In the inference phase, inputs are represented by images
captured by the AV’s camera. The outputs of YOLOv3 are
represented by a cropped image of the detected road signs.

Widely used neural networks for image classification, such
as Residual Network [19] or Visual Geometry Group-16 [20],
are unsuitable for deployment on autonomous systems due to
their high computational demands and insufficient accuracy for
this application. To address these challenges, we developed
a neural network specifically for road sign classification, as
shown in Fig. 4. The architecture efficiently extracts features
using convolutional layers with 5x5 and 3x3 kernels to capture

6https://github.com/aladdinpersson/Machine-Learning-
Collection/tree/master/ML/Pytorch/object detection/YOLOv3

7https://gitlab.fel.cvut.cz/mobile-and-wireless/autonomous-driving

Fig. 4: Neural network for road sign classification.

Fig. 5: Road signs used for testing.

both large and fine details. Dense layers and dropout regular-
ization ensure robust classification while mitigating overfitting
during training process.

The neural network is trained on images containing a single
road sign, with labels corresponding to the road sign class. We
employ the ADAM optimizer with a learning rate of 0.001
and weight decay of 0.001, using cross-entropy [21] as the
loss function. For inference, the input is the cropped image
of the road sign, extracted by YOLOv3. The network outputs
a probability distribution over the classes, with the highest
probability indicating the predicted class.

Training is conducted using the German Traffic Sign Recog-
nition Benchmark [22], which includes 43 road sign types. To
simplify the training and evaluation process, we selected seven
commonly encountered road sign types: Speed limit (20 km/h,
50 km/h, and 80 km/h), End of all prohibitions, No entry for
vehicles, Priority road, and Stop sign, as shown in Fig. 5. This
subset allows focused testing within limited time constraints
while ensuring relevance to real-world scenarios.

IV. EXPERIMENTAL SETUP AND SCENARIO

In this section, we discuss the setup and scenarios for
experiments to evaluate the benefits of the computation tasks
offloading compared to the local computing. Performance
metrics are also defined in this section.

A. Experimental Setup

The MEC server is represented by a computer with a CPU
i7-115G7, 16 GB RAM, and GPU Nvidia RTX 2060. The
computing power of the MEC server for CPU and GPU (CP

and CGPU ) is 20.4 GFLOPS and 52000 GFLOPS, respec-
tively. Note that the graphic card is used only for road sign
recognition. Calculations on AV are performed on Raspberry
Pi 4 version B with computing power CAV of 9.69 GFLOPS.
For communication between the AV and MEC server, the
5G mobile network is used. The 5G operates at 3.5 GHz
(n78) with carrier bandwidth 20 MHz. We consider modulation
and coding scheme 24 (Modulation 64QAM and Code rate
RX 0.754) [12], 106 resource blocks, downlink and uplink
periodicity of 5 ms, downlink and uplink pattern: 6 slots for
downlink and 3 slots for uplink.

https://github.com/aladdinpersson/Machine-Learning-Collection/tree/master/ML/Pytorch/object_detection/YOLOv3
https://github.com/aladdinpersson/Machine-Learning-Collection/tree/master/ML/Pytorch/object_detection/YOLOv3
https://gitlab.fel.cvut.cz/mobile-and-wireless/autonomous-driving


Fig. 6: Map of environment for experiments showing space
for AV movement (grey area), walls (black lines), obstacles
(red boxes), example of computed path for AV (green line),
AV’s start and destination, base station, MEC server, and road
signs.

TABLE I: Volume of Tasks and Computational Demand

Task Dul [kb] Ddl [kb] CD [GFLOPS]
Road sign recognition 282.4 0.624 523.260

Path planning 944 10.64 0.380

The experiments are done with the AV model described in
Section III. To ensure consistent conditions across different
experiments, we regulate the quality of the communication
channel by limiting the transmission bitrate in both uplink and
downlink directions to the same values in range from 0.1 to
3 Mb/s on the AV site by program Wondershaper. Limiting
the bitrate allows us to guarantee the same conditions for
all experiments. Note that modification of parameters such
as bandwidth, transmission power or modulation and coding
scheme could not guarantee the same data rate due to channel
conditions that can change quickly in an unpredictable way
and cannot be controlled in a real-world environment during
experiments. To ensure delivery of the offloaded computation
to the MEC server and return of results back to the AV,
transmission control protocol (TCP) is adopted at transport
layer above the Internet protocol (IP).

The task volume of data in uplink Dul and in downlink Ddl

and computation demand CD are presented in Table I.
To ensure reliable information on energy consumption and

computation time for the road sign recognition and the path
planning, each task is repeated 100 times for every bitrate.
The results are then averaged out over all 100 experiments.

For every task we prepare a dataset providing the same
input data to the algorithm (road sign recognition and path
planning) to ensure consistency between experiments. The
datasets contain images for road sign recognition tasks, AV’s
start position, AV’s destination and map of the environment
for path planning tasks and is available on our GitHub8. An
example of the experiments is demonstrated in video at our
YouTube channel9.

8https://gitlab.fel.cvut.cz/mobile-and-wireless/autonomous-driving
9https://youtu.be/aPKcAR9Qli4?si=f1m0Y7pn2Ys0vKSg

B. Performance metrics

Two performance metrics are considered: i) energy con-
sumption and ii) delay, as defined in Section II. The energy
consumption is measured using a USB power meter with 1
mWh resolution and ±1.41% accuracy.

The delay measurement is recorded on both the AV and
MEC server. The computing delay tpn is defined as the time
difference between the data input to the road sign recognition
or RRT* algorithm and the time when output of these algo-
rithms is ready. The communication delay tcn is measured as
the sum of the time taken to send data from the AV to the
MEC server (uplink communication time tuln ) and the time
taken to receive the processed results from the MEC server to
the AV (downlink communication time tuln ).

C. Scenarios of experiments for different tasks

In this subsection, we describe the scenarios used to mea-
sure the consumed energy and the offloading delays for the
road sign recognition and the path planning.

1) Road sign recognition: The images for the experiments
are selected so that there is an even representation of cases
from zero to four road signs in one image. During the
measurement a total of 100 images are processed for each
bitrate. Individual road signs are deployed randomly along the
path, see Fig. 6.

2) Path planning: The map of the environment and an
example of the path for the AV are shown in Fig. 6. To
ensure fair comparisons, we pre-generate a fixed set of random
points for all experiments, guiding the exploration of the RRT*
algorithm. Unlike the classical RRT* algorithm [13], where
random points are dynamically generated to expand the path
tree, our adopted approach eliminates randomness that could
otherwise affect the computing delay tpn. Random selection
of the tree growth directions in RRT* could significantly im-
pact computing delay tpn, making comparisons across bitrates
unreliable. By freezing the same set of points, we ensure
consistency in the generated paths.

V. PERFORMANCE EVALUATION

In this section, we present the results of experiments. The
results are presented in subsections corresponding to individual
types of the offloaded tasks, i.e., road sign recognition, or
path planning. In the last subsection, we introduce models for
overall task processing delay ton and consumed energies Ec

n

and Ep
n as a function of the communication bitrate. Note that

in Figs 7., 8., 9. and 10, σ = 1 indicates offloading the
tasks to the MEC server while σ = 0 represent the local task
processing.

A. Road sign recognition

Fig. 7 shows the average overall task processing delay
ton for the road sign recognition as a function of bitrate in
downlink and uplink (both are the same). For the offloading,
the communication delay tcn decreases with increasing bitrate,
while computing time tpn remains constant. Consequently, ton
decreases up to 2 Mb/s, after which it saturates due to constant

https://gitlab.fel.cvut.cz/mobile-and-wireless/autonomous-driving
https://youtu.be/aPKcAR9Qli4?si=f1m0Y7pn2Ys0vKSg


Fig. 7: Impact of bitrate on overall task processing delay ton
for road sign recognition

Fig. 8: Impact of bitrate on overall task processing delay ton
for path planning

Fig. 9: Impact of bitrate on overall energy consumption Eo
n

for road sign recognition
Fig. 10: Impact of bitrate on overall energy consumption Eo

n

for path planning

signal processing and communication overhead delay, which
dominates tcn and creates a lower bound regardless of further
increase in bitrate. The signal processing and communication
overhead delay is constant for every bitrate, and is introduced
in HW (USRP and modem) and can be seen as overhead
added on top of data communication and we include it in
the developed models in the next subsection.

The dependence of communication delay tcn on bitrate for
offloading follows a hyperbolic relationship in line with (2).
The overall task processing delay ton is from 11.9 times (for
0.1 Mbit/s) to 36.5 times (for 3 Mbit/s) longer for the local
processing compared to the offloading. The offloading remains
efficient even at low bitrates, as the reduction in tpn for the
offloading compared to the local processing outweighs the
communication delay tcn. The road sign recognition, requiring
high computational power but transferring only small data
volumes, benefits from the offloading at any bitrate.

Fig. 9 shows the average overall energy consumption Eo
n for

the road sign recognition. The offloading reduces Eo
n by 3.1

times (for 0.1 Mb/s) to 30.7 times (for 3 Mb/s) compared to the
local processing. In case of the offloading Eo

n gets saturated at
about 1 Mb/s due the saturation of the communication delay tcn
while both computing energy consumption and communication
consumption remain constant.

The offloading proves to be more energy-efficient across all
tested bitrates for the road sign recognition, as the reduction
in the computing energy Ep

n by the offloading compared to the
local processing exceeds the increased communication energy

Ec
n introduced by the offloading.

B. Path planning

Fig. 8 presents the overall task processing delay ton for
the path planning as a function of bitrate. As in Fig. 7, for
the offloading, the communication delay tcn decreases with
increasing bitrate while the computing time delay tpn remains
constant, leading to a hyperbolic dependence of tcn on bitrate,
as expected according to (2).

The overall task processing delay ranges from 4.5 times
increase (for 0.1 Mb/s) to 3.7 times decrease (for 3 Mb/s)
in case of the local processing compared to the offloading.
The offloading becomes more efficient only for bitrates above
0.5 Mb/s due to relatively large volumes of data transferred
to the MEC server compared to the road sign recognition.
For the offloading of the path planning, the trade-off between
the communication delay tcn and the computing time delay tpn
makes the offloading beneficial only at higher bitrates.

The overall energy consumption Eo
n for the path planning

is shown in Fig. 10. The offloading increases Eo
n by up to

4.5 times for low bitrates (0.1 Mb/s), but reduces Eo
n by

up to 3.5 times for high bitrates (3 Mb/s) compared to the
local processing. As in Fig. 9, the overall energy consumption
Eo

n for offloading first decreases with increasing bitrate due
to a reduction in the communication delay tcn. Then, the
overall energy consumption Eo

n for offloading saturates at
about 2 Mb/s, as the signal processing and communication
management latency becomes the dominant factor.



While both computing energy Ep
n and communication en-

ergy Ec
n for offloading decrease with increasing bitrate, the

offloading becomes more energy-efficient only for bitrates
above 0.6 Mb/s. This threshold is the trade-off point, where
the reduction in Ep

n achieved by the offloading exceeds the
increase in Ec

n due to the communication.

C. Modelling of overall task processing delay and energy
consumption

The experimental results presented in the previous section
allow for the creation of realistic models of overall task
processing delay, and computing and communication energy
consumption. The overall task processing delay is modeled as
follows:

ton = tcn + tpn = toh +
Dul

bul
+

Ddl

bdl
+ tpn, (6)

where toh is the delay due to signal processing and commu-
nication overhead (e.g., delay in USRP N310 or in modem).

The computing energy Ep
n and the communication energy

Ec
n are modeled as follows:

Ep
n = tonPp = (tcn + tpn)Pp =

(
toh +

Dul

bul
+

Ddl

bdl
+ tpn

)
Pp,

(7)

Ec
n = tonPc = (tcn + tpn)Pc =

(
toh +

Dul

bul
+

Ddl

bdl
+ tpn

)
Pc,

(8)
where Pc and Pp are the powers consumed for the communi-
cation (by modem) and for the task computing (CPU or GPU),
respectively.

The values of variables in the models derived from Figs
7., 8., 9. and 10 are in Table II. The average power consump-
tion of the modem Pc remains the same for both applications,
but the average power consumption of the CPU in the AV Pp

is higher for path planning. The transferred volumes of data
Dul and Ddl match the sizes defined in Table I, taking into
account overhead caused by upper layer protocols, such as
TCP/IP. The overhead is different for both application (road
sign recognition and path planning) and arise in variations in
volumes of transmitted data, resulting in different numbers of
sent packets. Each packet contains a fixed overhead of fixed
size implied protocols requirements by TCP/IP.

VI. CONCLUSIONS

We have demonstrated potential of computation offloading
from the autonomous systems, represented as AV, to the MEC
server in real environment with a real equipment for two prac-
tical applications commonly used by AVs. The computation
offloading from the AV to the MEC server achieves up to 80%
reduction in the overall task processing delay and up to 75%
in the energy consumption for the path planing. Reductions
of up to 96% in the overall task processing delay and up to
97% in the energy consumption are observed for the road sign
recognition. Testing across varying network conditions shows
that offloading the road sign recognition is always beneficial,
whereas the path planning is more efficient locally for low
bitrates up to 0.5 Mb/s. We have also developed models for

TABLE II: Values for models of tcn, Ep
n, and Ec

n for road sign
recognition (RSR) and path planning (PP).

Task t
p
n [ms] toh [ms] Dul [kb] Ddl [kb] Pp [W] Pc [W]

RSR 1271.00 64.41 288.36 0.64 0.93 0.50
PP 149.00 333.30 1033.35 11.65 1.27 0.50

the computing and communication energy, and overall task
processing delay.

Future work should expand the system to multiple BS and
AVs, explore new offloading decision algorithms, and compare
additional path planning and following methods to optimize
performance.

REFERENCES

[1] L. Liang, et al., “Vehicle Detection Algorithms for Autonomous driving:
A Review,” Sensors 2024, no. 10, 2024.

[2] M. Baziyad, M. Saad, R. Fareh, T. Rabie and I. Kamel, ”Addressing
Real-Time Demands for Robotic Path Planning Systems: A Routing
Protocol Approach,” IEEE Access, vol. 9. pp. 38132-38143, 2021.

[3] Z. Bečvář and P. Mach, ”Mobile Edge Computing: A Survey on Archi-
tecture and Computation Offloading,” IEEE Communications Surveys &
Tutorials, vol. 19, no. 3, 2017.

[4] D. Shi, et al., “Task offloading strategies for mobile edge computing: A
survey,” Computer Networks, volume 254, 2024.

[5] L. Liu, et al., ”Deep Reinforcement Learning-based Dynamic SFC
Deployment in IoT-MEC Networks,” IEEE ICCC, 2022.

[6] X. Li, S. Bi, Z. Quan and H. Wang, ”Online Cognitive Data Sensing
and Processing Optimization in Energy-Harvesting Edge Computing
Systems,” IEEE Transactions on Wireless Communications, 2022.

[7] C. -L. Chen, et al., ”Latency Minimization for Mobile Edge Computing
Networks,” IEEE Trans. Mob. Comput., vol. 22, no. 4, 2023.

[8] B.K. Osibo, et al., “An edge computational offloading architecture for
ultra-low latency in smart mobile devices”. Wireless Netw. 28, 2022.

[9] S. Song, et al., “Delay-sensitive tasks offloading in multi-access edge
computing,” Expert Systems with Applications, vol. 198, 2022.

[10] R. Xiong, , et al., ”Reducing Power Consumption and Latency of
Autonomous Vehicles With Efficient Task and Path Assignment in
the V2X-MEC Based on Nash Equilibrium,” IEEE Transactions on
Intelligent Transportation Systems, vol. 25, no. 10, 2024.

[11] Y. Zhang, C. Chen, H. Zhu, J. Wang, ”Task Offloading for MEC-V2X
Assisted Autonomous Driving,” 2024 IEEE 99th VTC, 2024.

[12] 3GPP, ”5G Mobile System Architecture, TS 23.501, version 17.5.0,”
3GPP Technical Specification, 2022.

[13] P. Zhao, Y. Chang, W. Wu, “Dynamic RRT: Fast Feasible Path Planning
in Randomly Distributed Obstacle Environments,” Journal of Intelligent
& Robotic Systems, vol. 107. 2023.

[14] A. Vennelakanti, et al., ”Traffic Sign Detection and Recognition using
a CNN Ensemble,” 2019 IEEE ICCE, pp. 1-4, 2019.

[15] S. Macenski, I. Jambrecic, “SLAM Toolbox: SLAM for the dynamic
world,” The Jurnal of Open Source Software, vol. 6., 2021.

[16] J. Redmon and A. Farhadi, ”YOLOv3: An Incremental Improvement,”
21 09 2018. [Online]. Available: https://arxiv.org/abs/1804.02767. [Ac-
cessed 12 07 2024].

[17] Z.-Q. Zhao, P. Zheng, S.-T. Xu and X. Wu, “Object Detection With
Deep Learning: A Review,” IEEE Transaction on Neural Networks and
Learning System, vol. 30, no. 11, pp. 3212-3232, 2019.

[18] E. Hassan, M.-Y. Shams, N.-A. Hikal, “The effect of choosing optimizer
algorithms to improve computer vision tasks: a comparative study,”
Multimed Tools Appl, vol. 82, pp. 16591-16633, 2023.

[19] S. Nazmul and A. Maida, “Enchancing ResNet Image Classification Per-
formance by using Parametrized Hypercomplex Multiplication,” 2023.

[20] M. A. Wani. et al., “Basic of Supervised Deep Learning,” Advances in
Deep Learning, pp. 13-29, 2020.

[21] A. Mao, et al., “Cross-entropy loss functions: Theoretical analysis and
applications,” International conference on Machine learning, 2023.

[22] J. Stallkamp, M. Schlipsing, J. Salmen and C. Igel, “Man vs. computer:
Benchmarking machine learning algorithms for traffic sign recognition,”
Neural Networks, 2012.


	Introduction
	System Model
	System Design and Implementation of Autonomous Vehicle Framework
	Overview of implemented system for computation offloading from AV to MEC via mobile networks
	Implementation of autonomous vehicle
	Integration of MEC server and communication infrastructure
	Applications for offloading
	Path planning RRT* algorithm
	Road sign recognition


	Experimental setup and scenario
	Experimental Setup
	Performance metrics
	Scenarios of experiments for different tasks
	Road sign recognition
	Path planning


	Performance evaluation
	Road sign recognition
	Path planning
	Modelling of overall task processing delay and energy consumption

	Conclusions
	References

