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Abstract—We address the problem of a coordination among
machine learning tools solving different problems of radio
resource management. We focus on energy efficient device-to-
device (D2D) communication in a scenario with many devices
communicating adhoc directly with each other. In such scenario,
deep neural network (DNN) is a convenient tool to predict the
channel quality among devices and to control the transmission
power. However, addressing both problems by a single DNN is
not suitable due to a dependency of the power control on the
predicted channel quality. Similarly, a simple concatenation of
two DNNs leads to a high cumulative learning error and an
inevitable performance degradation. Hence, we propose a mutual
coordination of the DNNs for channel quality prediction and
for power control via a feedback and a knowledge transfer to
mitigate the accumulation of errors in individual learned models.
The proposed coordination improves the energy efficiency by 10–
69% compared to state-of-the-art works and reduces the training
time of DNNs more than 3.5-times compared to DNNs without
coordination.

Index Terms—Machine learning, device-to-device, coordina-
tion, power control, channel quality, energy efficiency

I. INTRODUCTION

To manage device-to-device (D2D) communication in mo-
bile networks efficiently, the quality of channels among the
communicating devices (i.e., the D2D channels) should be
known. The acquisition of channel quality is traditionally
done via a measurement of reference signals [1]. However,
the reference signals occupy radio resources from the same
pool as the resources for data transmissions. Consequently,
the transmission of reference signals reduces the amount
of resources remaining for data transmissions. Besides, the
traditional channel quality measurement leads to an additional
energy consumption on the side of a transmitter (sending
the reference signals and receiving reports with the measured
channel quality) as well as a receiver (physical measurement
and reporting) [2]. Hence, in the future networks with plenty of
devices communicating adhoc with each other [3], knowledge
of D2D channels for radio resource management purposes
becomes a challenging issue, since not only information on
direct D2D channels between the two communicating devices
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but also on all interfering channels should be acquired for
radio resource management purposes.

To reduce the acquisition cost of a large number of D2D
channels for radio resource management purposes, the chan-
nel quality between two devices can be predicted using a
digital twin [4] or deep neural networks (DNN) [5]. The
obtained channel quality information can be then exploited for
a plethora of radio resource management processes, such as
scheduling, coordinated multi-point transmission, interference
mitigation/cancellation, or transmission power control.

In this letter, we focus on transmission power control and
its relation to the problem of channel quality acquisition. The
transmission power control can be optimally solved by water-
filling [6]. However, its iterative nature and a high complexity
limit practical application [6]. The power control for D2D pairs
(i.e., two devices communicating directly) is a non-convex
problem [7] difficult to be solved with a low complexity.
Hence, the authors in [8] propose D2D power control using
extreme hierarchical machine learning. In [9], the authors
train the DNN to determine transmission power of individual
devices. In [10]–[12], the authors adopt neural networks for
power allocation. All these works rely on knowledge of all
channels among all devices, making a practical implementa-
tion of these works complicated due to a huge number of
channel qualities to be acquired [13].

To overcome the problem of a huge number of channels to
be measured for D2D power control, the D2D channel quality
prediction via DNN proposed in [5] can be adopted, and the
predicted channel qualities can be fed into existing machine
learning-based transmission power control approaches (e.g.,
[8], [9]). Unfortunately, a simple concatenation of the machine
learning-based solutions for the prediction of D2D channel
qualities and for the D2D transmission power control results in
a high cumulative learning error. This error could be removed
via an extensive training, but such training would lead to an
overfitting and tuning hyperparameters of the DNNs would
be complicated due to increased number of DNN features.
Consequently, the network performance is degraded notably,
as we show in this paper. Another option is to merge D2D
channel quality prediction and D2D power control into a single
DNN. Nevertheless, resulting DNN is either very large or such
solution performs poorly due to a dependency among inputs
and outputs of such DNN, as we also demonstrate later in
this paper. The size of a single large DNN can be reduced via
knowledge distillation [14]. However, the dependency among
inputs on outputs of DNN still limits performance.

Therefore, in this letter, we propose coordinated machine
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learning for D2D channel prediction and D2D transmission
power control to maximize the energy efficiency of D2D
communication. We focus on the energy efficiency, as it com-
bines aspects of a data rate maximization commonly targeted
in D2D scenarios with an energy consumption minimization
motivated by green communications. To determine the D2D
channel qualities at a low cost even in large-scale scenarios, we
adopt the D2D channel quality prediction via DNN introduced
in [5]. The predicted channel quality is fed to another DNN
for D2D transmission power control. The key novelty of our
work resides in the introduction of a mutual coordination
of the two DNNs (one for channel quality prediction and
one for power control) using a feedback and a knowledge
transfer in order to mitigate the accumulation of errors in
individual learned models. We demonstrate that the proposed
coordination improves the energy efficiency of the system and,
at the same time, reduces the training time of the DNNs
compared to the solution based on DNNs without coordination
as well as state-of-the-art works.

II. SYSTEM MODEL

In this section, we introduce a communication model,
followed by an outline of a general architecture of the DNNs.

A. Communication model
We consider a generic urban area with buildings, L BSs,

and M D2D devices creating N = ⌊M/2⌋ D2D pairs, as
shown in Fig. 1. Since we focus on cooperation of machine
learning tools, we adopt single-antenna system at all BSs and
all devices for clarity of presentation and an extension towards
multi-antenna system is left for future research. The bandwidth
B is split arbitrarily into K communication channels. The
signal-to-interference plus noise ratio (SINR) experienced by
the n-th D2D pair’s receiver at the k-th communication
channel is:

γk
n =

pkngn,n∑i=N
i ̸=n,i=1 p

k
i gi,n + σ0

(1)

where pkn is the transmission power of the transmitter in
the n-th D2D pair, gn,n is the channel quality between the
transmitter and the receiver of the n-th D2D pair, pki is the
transmission power of the i-th device causing interference to
the n-the D2D pair, gi,n is the quality of channel from the i-
th device causing interference to the receiver of the n-th D2D
pair, and σ0 is the noise. Then, the communication data rate
of the n-th D2D pair is:

ckn = Bk log(1 + γk
n) (2)

where Bk is the bandwidth of the k-th channel.
The energy efficiency of the n-th D2D pair is defined as:

Ek
n =

ckn
pkn × τ

(3)

where τ indicates time interval when the metrics are observed.

B. Architecture of DNNs
In this section, general architectures of DNN for channel

quality prediction (labeled as DNN-CQ) and DNN for power
control (labeled as DNN-PC) are defined.

Fig. 1. System model with devices communicating directly using D2D and
transmitting powers set using DNN based on predicted channel qualities.

1) DNN-CQ: The DNN-CQ, comprises an input layer, H
hidden layers, and an output layer. First, cellular channel quali-
ties, i.e., the channel qualities from the directly communicating
devices to the L BSs, are inserted into the input layer [5].
Note that the channels from devices to BSs are supposed to
be known, as these are required for conventional radio resource
and mobility management [15].

The cellular channel qualities are then processed through
H hidden layers. The h-th layer is composed of Vh neurons
with weights [w1

h, . . . , w
Vh

h ]. All the hidden layers are fully
connected and are followed by the sigmoid activation function.
By employing a sigmoid function, the output can be inherently
confined to the desired range. By incorporating the sigmoid
activation, the network can capture non-linear transformations
in the data, enabling the acquisition of complex patterns and
decision boundaries. This utilization enhances the network’s
ability to learn and represent intricate features, resulting in
improved representation and discrimination capabilities. The
output layer is represented by a regression that returns the
predicted D2D channel quality in the form of continuous value.

2) DNN-PC: Similar to DNN-CQ, DNN-PC is structured
with an input layer, H hidden layers, and an output layer [9].
Different from DNN-CQ, the input of DNN-PC is represented
by the predicted D2D channel qualities. The predicted D2D
channel qualities are processed through the hidden layers. All
hidden layers are fully connected and accompanied with the
sigmoid activation function. The output regression layer of
DNN-PC determines the transmission power pkn.

III. PROBLEM FORMULATION

To demonstrate benefits of the proposed coordination of the
two DNNs, DNN-CQ for the D2D channel quality prediction
and DNN-PC for the power control, we define a common
problem targeting maximization of the energy efficiency for
D2D communication via controlling the transmission power
of the D2D transmitters. The problem is expressed as:

max
pk
n

∑
k

Ek
n

a) ckn > cn,req,∀n
b) 0 < pkn < pmax,∀n

(4)

where 4a) ensures the minimum data rate cn,req required by
the n-th D2D pair while 4b) limits the transmission power of
the transmitter in the n-th D2D pair to pmax.

Since measurement of the quality of all channels among all
devices in a traditional way via reference signals is not feasible
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in real-world applications with a high number of devices,
we exploit the channel quality prediction via DNN proposed
in [5]. Besides, as the transmission power control for D2D
devices is a non-convex problem [7], we adopt DNN-based
power control proposed in [9]. Of course, an application of
these two DNNs itself would be of limited novelty. However,
our main novelty and contribution consist in development and
demonstration of the fruitful mutual coordination between both
DNNs. Note that such coordination between DNNs or other
machine learning tools is required in any scenario, where the
channel prediction via DNNs coordinates with any other radio
resource management techniques. Thus, the problem of power
control defined in this section is considered as a tool for the
demonstration of the DNNs coordination, but the formulated
problem itself is not the major innovation in our paper.

IV. PROPOSED COORDINATION OF DNNS

This section first gives a motivation and a high-level
overview of the proposed DNN coordination. Then, details of
the coordination for training and exploitation are elaborated.

A. Motivation and high-level overview of proposed concept

To control the transmission power of D2D pairs, the chan-
nels among D2D pairs should be known. In the state-of-the-
art works, both sub-problems, i.e., the D2D channel quality
prediction from the channels to neighboring BSs and the power
control for D2D, are solved separately via two independent
DNNs, see e.g., [5] and [8], [9], respectively. These two DNNs
can be simply concatenated so that the first DNN predicts the
D2D channel qualities from the known channel qualities to
BSs [5] and feeds these learned D2D channels to the second
DNN, which predicts the D2D transmission power [8], [9].
Then, both DNNs can be trained jointly. Unfortunately, joint
training would lead to relatively long learning with plenty of
required samples and to a performance degradation due to
relatively small but accumulated and propagated errors in both
DNNs, as we demonstrate later in this paper.

Motivated by the above-mentioned limitations of the related
works, we suggest a mutual coordination of both DNNs. In our
concept, both originally independent DNNs are interconnected
and accompanied by a feedback and a knowledge transfer, as
shown in Fig. 2. The objective of such interconnection is to
minimize the total error accumulated in and propagated via
both DNNs and, consequently, to improve performance (in
our case, the energy efficiency of D2D communication).

The interaction between both DNNs is related to the training
phase and to the phase of exploitation of the trained DNNs. We
discuss details of these aspects in the following subsections.

B. Coordination of DNNs in training

In the training, the coordination between DNN-CQ and
DNN-PC is implemented by transferring the learned knowl-
edge. In particular, the DNN-CQ trained on one task (D2D
channel prediction) is reused as a starting point for the training
of the DNN-PC to perform another task (power control).

For training phase, the inputs of DNN-CQ are represented
by M × L channel qualities from M devices to L BSs

Fig. 2. Architecture of the proposed coordination among DNNs for D2D
channel quality prediction (DNN-CQ) and DNN for power control (DNN-
PC) interconnected for training and exploitation purposes.

(representing features), and N true D2D channel qualities for
N D2D pair are the outputs (targets). These features and
targets constitute a learning sample for the DNN-CQ. The
DNN-PC in our proposed work processes the training samples
composed of N predicted D2D channel gains (features) and
generates output in the form of N predicted D2D transmission
powers (targets). The input and output of both DNNs are
aligned with the information commonly available and used
in existing mobile networks, see, e.g. [5], [17].

The trained layers of DNN-CQ are used as an initialization
for the training of DNN-PC. Also, the weights are transferred
from the DNN-CQ to the DNN-PC for the initiation. However,
the weights are adjusted and fine-tuned on a new dataset with
different features and targets using DNN-CQ as a teacher
network guiding the learning of DNN-PC acting as a student
network. As a result, DNN-PC benefits from the features and
representations previously learned by DNN-CQ and learns the
task faster and more accurately.

C. Coordination of DNNs during exploitation of trained DNNs

The coordination of DNNs during exploitation for D2D
communication is motivated by a need to satisfy the constraints
of the targeted problem. To this end, the coordination facili-
tates a relation of the predicted channel qualities and powers
to the environment, where the performance is optimized. We
implement the coordination via a loss function that provides
a feedback to both DNN-CQ and DNN-PC to update their
internal weights. The feedback indicates to both DNNs that
there is a potential error in predictions and both DNNs
acquire information from the environment enabling them to
take an appropriate action. In the loss function, we consider
a logarithmic component that continuously encourages high
energy efficiency and penalizes low energy efficiency. We
also incorporate a penalty if the differences cn,req − ckn and
pkn − pmax are positive. Unlike the traditional representation
of typical loss functions based on energy entropy or mean
square error, in our case, the penalties are added to satisfy the
constraints in (4). Hence, the loss function is defined as:

Lk
n = E[− log(Ek

n) + max(0, [cn,req − ckn])

+ max(0, [pkn − pmax])
(5)

The loss function Lk
n is calculated every iteration and is

continuously fed back to both DNN-CQ and DNN-PC to
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update their respective weights. The weights are updated based
on the objective function’ gradients during the training as:

θt+1 = θt + ϵ▽θLk
n(θt) (6)

where t is iteration of the update, 0 < ϵ ≪ 1 is the
initial learning rate of both DNNs (note that both DNNs
are initialized with the same initial learning rate to maintain
synchronization and a similar learning pace of both), ▽θLk

n(θt)
is the gradient of the loss function Lk

n with respect to the
parameters θ at the iteration t, and ▽θ is the gradient element,
which is computed with respect to the loss function and is used
to adjust the parameters to minimize the loss. The value of
the gradient is determined by the partial derivatives of the loss
function ▽θLk

n = (
∂Lk

n

∂θ1 ,
∂Lk

n

∂θ2 , ...,
∂Lk

n

∂θη ) concerning each layer’s
parameters, where η represents the number of parameters.

The proposed coordination during the exploitation of the
trained DNNs is summarized in following steps: i) the channel
quality gn,n is predicted via DNN-CQ; ii) gn,n for all devices
is fed into DNN-PC to predict the transmission power pkn
for the n-th D2D pair at the k-th channel; iii) the predicted
values of pkn for all devices at all channels are adopted in the
network and ckn, and Ek

n of the system are observed; iv) Lk
n

is determined using (5) to maximize the energy efficiency and
to reflect constraints in (4); v) the weights of both DNN-CQ
and DNN-PC are updated via feedback using (6).

The proposed solution is of a low computational complexity
proportional to the number of math operations in each DNN
(≈ 4820 operations per DNN for M = 10 and L = 4) and
an enumeration of (5). Hence, we can claim that the required
computational resources are marginal and do not limit real-
time processing assuming commuting power in the existing
networks. Thus, both DNNs can be implemented directly at
the BS, which commonly handles the power control of devices.
Similarly, also the proposed coordination can be managed by
the BS. Hence, there is no obstacle in implementation of the
proposal into mobile networks.

V. PERFORMANCE EVALUATION

This section describes a simulation scenario, competitive
algorithms, and provides a discussion of the simulation results.

A. Simulation scenario, models and competitive algorithms

We consider four BSs and 16–48 D2D devices (composing
8–24 D2D pairs) randomly distributed so that the maximum
distance between the D2D transmitter and the D2D receiver
is 50 meters [16], [18]. The minimum and maximum trans-
mission power for D2D transmitters is 1 dBm and 23 dBm,
respectively [9]. The carrier frequency is set to 2 GHz and
bandwidth is 20 MHz. A common level of thermal noise
of –110 dBm is assumed. We consider a mixed LoS/NLoS
scenario. In case of LoS, path loss is modeled in line with the
3GPP outdoor-to-outdoor environment [1]. The communica-
tion channel interrupted by one or more buildings in NLoS is
subject to additional attenuation of 10 dB per wall [5], [19].

Both DNN-CQ and DNN-PQ are composed of three hidden
layers with 60, 30, and 20 neurons in respective layers. The
batch size is set to 32, and the learning rate is 0.01. These

settings are determined by trial and error approach. For a fair
comparison of all evaluated approaches based on DNNs, DNN
setting is the same and even their training and inference are
performed over the same dataset with 100.000 samples.

We compare performance of our proposed concept of the
DNNs with coordination to the following competitive works:

• Upper bound – Measured Channel and Power Control
(MCPC): The actual channel qualities among D2D pairs
are assumed to be known and the power control is
performed using a water-filling algorithm [20]. Hence,
MCPC represents an upper bound that is not feasible in
practice due to very high complexity.

• DNNs w/o coordination: The state-of-the-art solutions for
D2D channel qualities prediction [2] [5] and transmission
power control [9] based on DNN are implemented in a
cascade/sequential way without any coordination.

• Single DNN: One DNN with two outputs (channel quality
prediction and power control) with same setting and
hyperparameters as DNNs in our proposal.

• DNN-CQ + water-filling: DNN-based channel quality
prediction [5] with water-filling power control acc. to [6].

• Unfolded weighted minimum mean squared error
(UWMMSE): The state-of-the-art work [21] leveraging
graph neural networks with multiple layers to efficiently
solve the transmission power optimization problem.

B. Simulation results
First, in Fig. 3, we analyze the convergence of the proposed

coordinated DNNs and compare it to the convergence of the
traditional non-coordinated DNNs (DNNs w/o coordination).
The DNNs with coordination converge significantly faster
(after about 270 episodes) than the non-coordinated (after
about 960 episodes). This is because of utilizing the experience
and insights gained from DNN-CQ transferred to DNN-PC.
Additionally, the proposed coordinated DNNs converge to a
higher energy efficiency (an improvement of 10%–19%).

The energy efficiency of the proposed and related works is
investigated in Fig. 4 over the number of devices. With more
devices, there are more opportunities for data transmission
and reception; hence, the total energy efficiency. The energy
efficiency of the proposal compared to DNNs w/o coordina-
tion, Single DNN, DNN+CQ + water-filling, and UWMMSE
is increased by up to 44.3%, 59.5%, 56.5%, and 69.5%,
respectively, since the coordination among DNNs allows to
suppress the negative effect of learning errors in each DNN
and enables an adjustment of DNNs’ weights to improve
performance. The efficiency of the DNNs w/o coordination
is affected by the accumulation of the learning errors in both
DNNs. Then, single DNN suffers from an impossibility to
properly reflect a dependency of the power control on the
predicted channel qualities. The combined DNN-CQ + water-
filling is impaired by the sensitivity of the optimal water-filling
to the errors in the channel quality prediction and the imperfect
channel quality prediction is emphasized by the water-filling,
which is trying to reach the optimum, but with inaccurate
inputs (channel qualities).

We also demonstrate the upper bound energy efficiency
reached by MCPC assuming accurately known all channel
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qualities and optimally determined transmission power control.
The upper bound energy efficiency derived via MCPC is only
a few percent (up to 8%) above the proposed coordinated
learning, even if the MCPC is not feasible in practice due
to unrealistic assumptions and huge complexity. Moreover,
the relative gap between the upper bound and the proposal
decreases with increasing number of D2D devices and such
behavior demonstrates a robustness of the proposal for future
scenarios with a high number of devices.

Figure 5 illustrates the impact of cn,req on the ratio of
satisfied devices, i.e., the devices experiencing data rate equal
or higher than cn,req. An increase in the minimum required
rate results in a decrease in the ratio of satisfied devices for
all algorithms. The lower satisfaction for higher requirements
is caused by limited communication resources available in the
system. The proposal outperforms the DNNs w/o coordination,
Single DNN, DNN+CQ + water-filling, and UWMMSE by
up to 13.6%, 23.7%, 20.5%, and 29.7%, respectively. The
proposal also reaches the ratio of satisfied devices close to
the upper bound (MCPC) with a degradation below 3%.

VI. CONCLUSION

In this paper, we have proposed a novel concept of co-
ordinated DNNs to predict the transmitting power for the
D2D devices in scenario, where measurement of all channel
qualities among all devices is not feasible. The novel mutual
coordination among the DNNs through transfer learning and
a feedback are incorporated to suppress the learning error of
individual DNNs. Simulation results show the effectiveness of
the proposed scheme in terms of improved energy efficiency
by at least 14%, ratio of devices satisfied with received data
rate increased by up to 13%, and about 3.5-times faster training
compared to approach with DNNs without coordination.

In the future, the proposal should be extended towards gen-
eral coordination of multiple machine learning tools solving
jointly various radio and mobility management techniques in
a scalable way.
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