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Abstract
Unmanned aerial vehicles (UAVs) equipped 

with reconfigurable intelligent surfaces (RISs) have 
emerged as a promising technology for numerous 
applications involving aerial networks. Howev-
er, the UAV-RIS concept faces challenges related 
to the deployment of the UAV-RIS, especially in 
cases, where UAV-RIS is combined with emerging 
technologies, such as beamforming, sensitive to 
propagation channel variation. In this article, we 
first overview various use-cases of UAV-RIS beam-
forming considering practical scenarios. Aiming 
to improve the performance of communication 
channels, we propose a machine learning-based 
beamforming policy for UAV-RIS by employing 
prioritized experience replay (PER) based deep 
Q-Network (DQN). Compared to tradition-
al approaches, the proposed PER DQN-based 
beamforming for UAV-RIS communication pro-
vides significant enhancements in performance. 
Finally, we highlight some potential directions for 
future research.

Introduction
In recent years, major advancements in the 
fifth-generation mobile networks towards the 
sixth-generation (6G) took place. Future 6G net-
works should offer ultra-high data rates, 3D space 
global coverage and connectivity, extremely high 
reliability, and low latency. However, ultra-reliable 
and high-capacity wireless communication is chal-
lenged by the random and time-varying wireless 
propagation channels.

To deal with time and frequency selective 
wireless channels, numerous techniques have 
been adopted in the literature. For example, adap-
tive modulation and coding schemes [1], differ-
ent space-time-frequency diversity techniques [2], 
dynamic power/rate control, and beamforming 
are used according to the channel conditions 
[3]. However, the above-mentioned techniques 
not only impose an additional overhead, but also 
allow only limited control over the wireless chan-
nel. Hence, the final hurdle to establishing a sys-
tem with high-capacity, ultra-reliability, and low 
latency in time and frequency selective wireless 
channels persists.

Recently, achieving high-capacity, ultra-reliabil-
ity, and low latency communications in the time/
frequency selective channels is explored with the 
assistance of unmanned aerial vehicles (UAVs). 
Based on the local radio environment, raising the 
height of UAVs can help to avoid blockages [4]. 
The UAVs allow to adjust their position to cre-
ate favorable communication channels with the 
ground terminals [5]. To further mitigate blockage 
problems, reconfigurable intelligent surface (RIS) 
[6] assisting the UAV communication is adopt-
ed to increase the overall network performance 
[4]. Using the RIS is a promising way to achieve 
high-capacity and ultra-reliable communication 
via low-cost passive/active reflecting elements 
integrated on a plane surface. The RIS elements 
individually reflect the incident signal while also 
changing either its phase or amplitude [7, 8].

The RIS can be deployed on fixed locations, for 
example, on buildings, to extend coverage even 
to blank spots, where the signal is blocked. How-
ever, in a highly congested environment, such as 
a metropolitan city, the signal from the transmitter 
to the receiver may need to be reflected by many 
fixed RISs to avoid the obstacles, resulting in a sig-
nificant path loss and and significantly increased 
deployment cost. Besides, to cover all possible 
coverage holes, where users may potentially 
appear, many RISs are required even if some may 
remain unused when no users are active in exclu-
sive coverage areas of these RISs. In contrast, the 
RIS mounted on the UAV (UAV-RIS) [4] provides 
panoramic full-angle reflection (360°) towards the 
user located on the ground and introduces flexi-
bility to significantly extend coverage and improve 
network throughput [9].

In the UAV-RIS networks, the beamforming 
scheme can be adapted into various coverage 
areas making the management more challenging 
than in the networks, where RIS is deployed on 
fixed locations with local coverage only. Perfor-
mance of the beamforming in UAV-RIS is deteri-
orated due to the fluctuation of the UAVs, thus 
giving a rise to the problem of beam misalignment 
[10]. Hence, dynamic beam alignment design 
necessitates improving reliability by continuous-
ly interacting with the environment and correct-
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ARTIFICIAL INTELLIGENCE ENABLED INTERNET OF UAVS COMMUNICATIONS ing the beam alignment. A reasonably appealing 
machine learning-based method to reduce beam 
misalignment is to manage beamforming based 
on reinforcement learning (RL) and combine it 
with a deep neural network to choose a reliable 
beamforming policy in real-time [11].

Although the UAV equipped with RIS is dis-
cussed in [12, 13], a detailed examination of cur-
rent applications and corresponding benefits when 
both UAV and RIS are combined together in a wire-
less network, and utilizing various machine learning 
techniques for beamforming are still missing. This 
gap motivates our current work. In this article, we 
first overview promising practical applications of 
UAV-RIS in future 6G mobile networks and, subse-
quently, we give an overview of various machine 
learning-based solutions for effective beamforming 
in the UAV-RIS aided networks. Subsequently, we 
investigate how to meet communication reliability 
and quality-of-service (QoS) requirements under 
realistic time-varying channels. The contributions of 
our work are summarized as follows:
•	 we provide a comprehensive discussion of 

use-cases of the UAV-RIS concept and their 
deployment scenarios;

•	 a comparative overview of machine learning 
algorithms to determine the policies for beam-
forming in the UAV-RIS is presented;

•	 we introduce a machine learning-based beam-
forming approach that relies on prioritized 
experience replay (PER);

•	 we show an improvement in the performance 
of the UAV-RIS aided networks using proposed 
PER-based beamforming compared to state-of-
the-art-works.

Use-Cases for UAVs Equipped With RIS
In this section, we discuss numerous use-cases 
of the UAV-RIS-aided wireless networks. We also 
consider the fundamental design issues in the 
UAV-RIS wireless network and provide potential 
practical solutions.

The UAV-RIS concept and its significant 
use-cases in the future mobile communication 
network, such as UAV-RIS used for enhancing 
coverage, secure communication, traffic moni-
toring, public safety users, and IoT devices are 
illustrated in Fig. 1 and discussed in following sub-
sections.

UAV-RIS Enhanced Coverage
A patch of small RIS attached to the UAVs can 
significantly improve the strength of the received 
signal and the UAVs at high altitudes can provide 
full angle coverage to the ground users. The UAV-
RIS concept can efficiently manage the features 
of an incident signal, like the amplitude, phase, 
and frequency, to provide reliable coverage to a 
specific area. By considering the buildings block-
ing the users’ reception of the signal, the posi-
tion of the UAV-RIS is determined first and, then, 
the RIS controller determines the phase shift and 
direction of the incoming signal.

The UAV-RIS network is more likely to estab-
lish LoS links with the users when compared with 
ground base stations only, as shown in Fig. 2a. 
In particular, the UAV-RIS can evade the sur-
rounding obstacles (e.g., buildings or trees) more 
effectively by enabling the LoS link between the 
blocked users on the ground and the terrestrial 

base stations by using the RIS. Hence, the UAV-
RIS concept can improve the performance of 
ground users. To further boost the performance, 
the UAV-RIS beamforming exploits machine learn-
ing techniques such as RL and deep Q-Network 
(DQN). In this way, beamforming is optimized 
to minimize the communication delay, maximize 
throughput, or reduce energy consumption.

UAV-RIS Secure Communication
Physical layer security can efficiently minimize the 
leakage of important information and improve 
data security. The UAV-RIS concept can be used 
to enhance the security of the physical layer in 
the UAV to ground communication. The UAV-RIS 
systems are competent in providing strong LoS 
links by dynamically adjusting the transmission to 
improve security. Due to the ability to reshape 
wireless channels, the UAV-RIS system enables a 
more controllable communication environment to 
enhance physical layer security.

In addition, high mobility and flexible deploy-
ment of the UAV-RIS necessitate improved secu-
rity. Merging the UAV-RIS concept and physical 
layer security introduces an appealing approach to 
provide pervasive secure wireless communication 
for next-generation wireless systems. In particular, 
as illustrated in Fig. 2b, the UAV-RIS concept can 
reduce signal leakage to ground eavesdroppers by 
transmitting cancellation and/or jamming signals, 
hence, providing security to legitimate users.

UAV-RIS Aided Road Traffic Monitoring
The UAV-RIS can detect numerous alarming events 
such as negligence of traffic rules or safe distance, 
car accidents, or over-speeding. The UAV-RIS con-
cept can be deployed in different areas on the 
highway or motorway to increase the safety of 
vehicles, pedestrians, and other road users. In fully 
connected road vehicles, each vehicle can report 
events to other vehicles through vehicle-to-vehicle 
communication facilitated through the UAV-RIS.

Besides, the wireless channel quality can 
change rapidly over time due to the highly dynam-
ic motion of vehicles and due to blockages intro-
duced, for example, by buildings or large vehicles. 
In case of uncertainties, such as random increase/
decrease in speed and exploiting the safe distance 
among vehicles, the vehicle can inform the traf-
fic police and road vehicles through the UAV-RIS 
immediately to limit the number of accidents. 
The UAV-RIS concept can intelligently adjust 
the beamforming to enhance the quality of vehi-

FIGURE 1. UAV-RIS use-cases for improved coverage and reliability.
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cle-to-vehicle links and increase the coverage of 
signal with its high energy efficiency and low cost. 
The UAV-RIS can also be deployed in a specific 
area for an event reporting to the traffic police. 
An example illustration for UAV-RIS aiding vehi-
cle-to-vehicle communication is shown in Fig. 2c.

UAV-RIS Aided Public Safety Networks
The UAV-RIS concept can be deployed in case 
of common communication infrastructure being 
destructed to provide flexible services, quick 
deployment, low latency, coverage guarantees, 
and extended battery lifetime for public safety 
users. As shown in Fig. 2d, the UAV-RIS provides 
coverage to mission-critical high priority public 
safety users to protect against threats such as an 
act of terrorism, natural disasters, and technolog-
ical accidents. This coverage helps to exchange 
information for situational awareness (e.g., voice, 
data, or video.) and improves the cooperation 
among public safety users.

The base stations could be destroyed or crash 
in malicious attacks or natural disasters and the 
remaining operational network can be inadequate 
to provide coverage to high-priority public safety 
users. To cope with this issue, the UAV-RIS can 
facilitate a direct or multi-hop communication 
scenario [14]. The UAV-RIS concept with public 
safety networks aids in minimizing network con-
gestion and coverage gaps. The outage probabil-

ity of public safety users is significantly reduced 
by adding flexible UAV-RIS relays into the disaster 
regions as shown in Fig. 2d. Using RIS reflection 
angle and phase shifts, the UAV-RISs can simulta-
neously provide coverage to nearby public safe-
ty users and act as a relay to cover public safety 
users located at large distances.

UAV-RIS Aided IoT Communication
The Internet of Things (IoT) plays a significant 
role in the area where human beings are not 
inhabited. Therefore, IoT devices are deployed in 
regions such as forests, deserts, or over the water 
to monitor and collect surrounding information 
[15]. Additionally, humans may also wear many 
IoT devices, such as health monitoring sensors, on 
them or in their surroundings, hence, it is conve-
nient to deploy the UAV-RIS concept to provide 
high-speed communication, larger bandwidth, 
minimum latency, and energy consumption to 
ensure the prevalence of the IoT.

The UAV-RIS concept can be used to support 
the real-time transfer of data from the distributed 
IoT devices using reflection angle and phase shifts 
of RIS as shown in Fig. 2e. Precisely, by deploy-
ing the UAV-RIS near the IoT devices with prop-
erly outlining beamforming policy, the data rate 
is improved with a reduced transmitting power of 
IoT devices for a particular data collection rate. The 
UAV-RIS concept is more likely to provide LoS links 

FIGURE 2. Use-cases of UAV-RIS: a) UAV-RIS enhanced coverage; b) UAV-RIS secure communication; c) UAV-
RIS aided road traffic monitoring; d) UAV-RIS aided public safety networks; e) UAV-RIS aided IoT devices.
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Humans may also wear 
many IoT devices, such 
as health monitoring 
sensors, on them or 
in their surroundings, 
hence, it is conve-
nient to deploy the 
UAV-RIS concept to 
provide high-speed 
communication, larger 
bandwidth, minimum 
latency, and energy 
consumption to ensure 
the prevalence of the 
IoT.
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with the IoT devices due to their high elevation. 
Moreover, the UAV-RIS can change their locations 
to provide on-demand coverage to IoT devices and 
transmits collected data to base stations.

Furthermore, there may be sensors buried 
under the soil or in water leading to signal atten-
uation, especially when the foliage is high and 
when the seasonal crops grow. In such a case, the 
UAV-RIS can help in collecting the data period-
ically (e.g., every day or every week, depending 
on the delay sensitivity of the data), with the UAV 
acting similar to a data mule.

Machine Learning Approaches for  
Reliable Beamforming with UAV-RIS

In this section, we discuss machine learning-based 
beamforming approaches for the UAV-RIS to 
improve the system reliability and rates of various 
users, such as blocked users, public safety users, 
legitimate users (security purposes), vulnerable vehi-
cles, and IoT sensors under practical dynamic chan-
nels. We also aim to ensure the QoS requirements 
of all users. In particular, we consider three different 
approaches that rely on RL, DQN, and PER DQN-
based beamforming to optimize the reflection 
phases of RIS in time-varying environments.

RL-Based Beamforming
First, we consider a model-free RL approach in 
order to resolve the issues of decision-making 
(beamforming) in a dynamic, rapidly changing 
wireless environment. Hence, we treat this prob-
lem through RL, where the UAV-RIS is considered 
as a part of the environment, and the central con-
troller located at the base station is treated as a 
learning agent. The state space includes channel 
information, transmission data rate, and QoS satis-
faction level. The action space contains the beam-
forming vector (flatting and broadening) chosen 
by the central controller and the transition prob-
ability shows the probability of transitions into a 
new state. Moreover, the reward function esti-
mates whether the beamforming policy is able to 
maintain a high data rate (considering the users’ 
QoS satisfaction level) or not. When the reward 
function satisfies the aimed objectives, the overall 
system performance is improved and the beam-
forming policy is adopted at the UAV-RIS.

DQN-Based Beamforming
Q-learning is an effective way to generate an out-
come for the learning agent so that the learning 
agent benefits from figuring out precisely which 
action to execute. In DQN, we employ a neural 
network to approximate the function of the Q-val-
ue. The state space is inserted as an input to the 
DQN, which then generates an output consider-
ing the Q-values of all possible actions. There are 
three steps involved in DQNs. In the first step, 
all the events from the users are stored in mem-
ory. Secondly, the system determines the future 
action by calculating the maximum output. In the 
final step, the loss function is found by calculat-
ing the mean square error of the predicted value 
(Q) and the target value (Q*). When we utilize 
the RL-based beamforming policy, the target or 
actual values are not considered. In DQN-based 
beamforming, in contrast, the system updates the 
equation of Q-value derived from the Bellman 

equation. The reward is the substantive outcome 
achieved in RL. Using the backpropagation for 
convergence from a reward function, the network 
updates its policy gradient and attains a beam-
forming strategy.

Drawbacks of RL and DQN based Beamforming
Despite the tremendous advantages of the RL, the 
RL suffers from a slow speed of convergence, and 
the RL is also not well tailored for the problem 
of UAV-RIS beamforming, which includes con-
tinuous state space. The policy gradient method 
converges to a suboptimal solution and it has the 
ability to deal with consecutive state-action space. 
Moreover, it is unmanageable for policy gradient 
algorithms and RL to determine the optimization 
problem under the input state space with high 
dimensions (large data). Contrary, DQN works 
well in learning policies with high-dimensional 
state space, but the non-linear Q-function possibly 
leads to an unpredictable learning process.

PER DQN-Based Beamforming
Even though DQN is able to perform efficiently 
in learning with a high-dimensional state space, 
the deep neural network utilized in DQN may 
lead to divergence in the dataset causing cor-
relations between input and output. For this pur-
pose, we propose to exploit experience replay to 
avoid the unpredictable learning process of the 
RL algorithm. The experience replay is deployed 
as a circular buffer, where the oldest transition 
in the buffer is discarded to create space for 
recent transformations. In particular, the experi-
ence replay is implemented as a fixed-size buffer 
(Fig. 3) that stores current transitions gathered by 
the system. It enhances the efficiency of DQN by 
allowing data to be reused many times for training 
instead of discarding data. We optimize the beam-
forming and provide a strong LoS connection by 
using PER DQN. However, by placing eavesdrop-
pers or jammers outside the relatively narrow 
radiation region of the RIS beam, a network can 
mitigate the risk of security attacks. The RISs are 
able to control the radio propagation environ-
ment and act as key enablers for improving the 
physical layer security of wireless communication 
systems in an economical and energy-efficient 
manner. Therefore, the optimized beamforming in 
the UAV-IRS helps to enhance the security of the 
physical layer in UAV-to-ground communication. 
It also improves the stability of the system during 
the training process.

All changes in DQN are sampled from the buf-
fer at fixed intervals and utilized in the process of 
training. The commonly used sampling approach 
is PER, where new transitions are initialized to the 
ultimate priority values seen so far and these are 
only updated once they are sampled. The priority 
is updated after the loss function is received in the 
neural network. At the end of the training, the sys-
tem avoids overfitting by considering constantly 
prioritized experiences.

Due to the highly dynamic and high-dimen-
sional properties and the unpredictable channel 
state information of the UAV-RIS communication, 
we adopt a deep PER learning-based beamform-
ing. The PER algorithm is employed to support 
the learning agent in adopting faster learning in 
dynamic wireless environments. In particular, the 

Despite the tremen-
dous advantages of the 
RL, the RL suffers from 

a slow speed of con-
vergence, and the RL 

is also not well tailored 
for the problem of 

UAV-RIS beamforming, 
which includes contin-

uous state space.
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learning agent injects the already stored data (i.e., 
channel state information, transmission data rate, 
and QoS satisfaction level), the reward (feedback) 
obtained after interacting with the environment, 
updated Q based on PER, and the data from the 
replay buffer (historical experience) to the DQN 
for training the learning model. Consequently, the 
learning agent applies the trained model to obtain 
the decision (reflecting beamforming matrix) 
based on its learned strategy as shown in Fig. 3.

The PER DQN algorithm is completed in two 
phases: the training phase and the implementation 
phase. In the training phase, the central controller 
at the base station gathers surrounding informa-
tion from the environment and makes a decision 
on the beamforming setting. The controller ini-
tializes system parameters and stores the current 
state including transmission data rate and channel 
state information. In addition, the state space acts 
as an input to DQN that trains the deep neural 
network model. The greedy scheme is adopted 
to adjust the exploitation and exploration (the 
actions having maximum reward are chosen, con-
sidering the current information). After that, when 
the selected action is performed, the agent gets 
a reward function from the surrounding environ-
ment. After sufficient training, the learning model 
initializes the implementation phase. During this 
phase, the RIS controller employs the trained 
model to determine its selected action space 
after passing through the DQN with the observed 
state-space from the UAV-RIS communication. 
More specifically, the RIS controller determines 
the action with the highest value based on the 
trained deep PER-based learning design.

Subsequently, the beamforming matrix (reflect-
ing beamforming) in the UAV-RIS concept is 
set according to the chosen action. In the end, 
the environment again inputs an instantaneous 
reward and a new state to the learning agent. The 
comparison among machine learning-based RIS 
beamforming systems (RL, DQN, PER DQN) is 
discussed in Table 1.

Performance Comparison of UAV-RIS 
Beamforming Techniques

In this section, we compare the performance of 
the three different UAV-RIS beamforming tech-
niques described in the previous sections using 
simulations. The RIS element count ranges from 

10 to 90. The pathloss is modeled as PL0 – 
10flog10(d/d0) (dB), where PL0 = 30 dB is the 
path loss at the reference distance, f is the path 
loss exponent and we set it as f = 3, and d rep-
resents the distance between the transmitter and 
the receiver. The learning model consists of three 
hidden layers, each of which has 500, 250, and 
200 neurons. As our data is of large dimensions 
or features, to get an optimum solution, we use 
3 hidden layers. When we use a larger number of 
hidden layers (more than 3), the complexity of the 
model is increased and this leads to overfitting.

In Fig. 4a, we observe that the validation loss is 
slightly higher than the training loss and lower than 
the testing loss. It shows that weights of the deep 
neural networks provide an appropriate mapping 
between input and output samples and the effec-
tiveness of the designed neural network weights. In 
the case of higher validation, training, and testing 
losses, the model suffers from underfitting, which 
would require altering the number of neurons.

The discount factor is set to 0.95, while the 
learning rate is set at 0.001. With an extremely 
high learning rate, a longer time to reach con-
vergence would be required, and its reward 
performance is significantly lower than that of a 
learning rate of 0.001. Furthermore, if we use a 
too-low learning rate it will take a longer time to 
reach convergence. With a learning rate of 0.001, 
the model is capable of learning the problem 
as shown in Fig. 4a. Therefore, we choose the 
learning rate with a value of 0.001 in our tests. 
We focus on the long-term reward and we use a 
lower number of episodes. Hence, the discount 
factor value is set to 0.95. Over the first 100 epi-
sodes, the exploration rate is linearly annealed 
from 0.8 to 0.1 and, then, the exploration rate 
remains constant and the reliability requirement 
ranges from 99.1 percent to 99.9 percent. The 
threshold for QoS satisfaction is set to a minimum 
transmission data rate of 5 b/s/Hz. When the 
transmission data rate is lower than the 5 b/s/Hz, 
the service is considered as unsuccessful. The per-
formance of the deep PER-based beamforming 
in the UAV-RIS communication network and the 
beamforming policy (broadening and flattening) is 
compared with the following approaches:
•	 The traditional RL-based beamforming scheme, 

where RL is employed to calculate the beam-
forming policy.

•	 The traditional DQN-based beamforming 
scheme, where a deep neural network is applied 
to evaluate the Q-value when utilizing the beam-
forming policy with the largest Q-value.

•	 The classical UAV-RIS communication, where 
no beamforming is adopted by UAV-RIS.

In Fig. 4b, the QoS satisfaction probability of the 
proposed scheme is examined and compared with 
RL and DQN-based RIS-beamforming and without 
RIS-beamforming. For all algorithms, with an increas-
ing number of reflecting elements, the QoS satisfac-
tion probability improves as well. The increase is 
because more reflecting features can provide addi-
tional signal paths and directionality. The proposed 
PER-DQN UAV-RIS beamforming outperforms 
notably all other approaches. For only 10 reflecting 
elements, the proposed PER-DQN reaches already 
95 percent QoS satisfaction, while only 90 per-
cent, 85 percent, and 78 percent are reached by 
DQN, RL, and without RIS beamforming approach-

FIGURE 3. Deep PER-based beamforming for the UAV-RIS systems.
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es, respectively. At the same time, the proposed 
PER-DQN reaches 100 percent QoS satisfaction 
already for 50 reflecting elements, while 70 and 90 
are required by DQN and RL-based approaches. 
This excellent performance of the proposed PER-
DQN is due to the QoS-aware reward that is used 
in PER-DQN. Within a reasonable change in reliabil-
ity thresholds, the machine learning-based scheme 
achieves a high successful transmission probability.

The PER-based beamforming policy outper-
forms the RL and DQN-based RIS-beamforming 
and the case without RIS-beamforming also in 
terms of the transmission probability under vari-
ous reliability requirements as shown in Fig. 4c. As 
we get more strict for the reliability threshold, the 
successful transmission probability decreases rap-
idly for RL, DQN, and without RIS beamforming 
to 0.80, 0.70, and 0.45, respectively. In contrast, 
the proposed DQN-PER leads to only negligi-
ble degradation and the transmission probability 
remains at 0.92 even for 99.9 percent.

Research Challenges and Future Directions
To cover the future era of the “Internet of Drones 
with RIS” potential research directions are high-
lighted in this section.

Millimeter-Wave UAV-RIS Beamforming
Millimeterwave (mmWave) communication uses 
a wide bandwidth at frequencies of 28 GHz and 
above, and it can be coupled with UAV-RIS for 
high data rate communications. It is well known 
that mmWave signals suffer from high path loss, 
penetration loss, and blockages, and these aspects 
become even more apparent at sub-terahertz and 
terahertz frequencies likely to be supported by 
6G networks. Generally, the LoS UAV-RIS and 
base station channels are favorable and practi-
cal in harsh channel conditions and can help tre-
mendously in improving coverage at mmWave 
frequencies and beyond. Efficient mmWave 
beamforming is required to be developed due 
to the high mobility and altitude of UAVs in 3D 
mmWave UAV-RIS concept.

UAV-RIS Swarm Communications
Multiple UAVs equipped with RIS can be con-
nected to each other to create a group of highly 
coordinated UAV-RISs to achieve a joint mission 
cooperatively. It is considered challenging for 
the UAV-RIS to link directly with the base station 
because of the large number of UAV-RIS. Alterna-

tively, the base stations can provide connectivity 
between the UAV-RIS network and the core net-
work. Cooperative communication is considered 
one of the potential strategies for providing assist-
ed UAV-RIS to UAV-RIS communications. More-
over, the massive multiple input multiple output 
techniques for communications with multiple con-
nected UAV-RIS are seen as leading research in 
the coming years. For the efficient UAV-RIS net-
work topology and an impeccable integration of 
the UAV-RIS concept with the mobile networks, 
further investigations towards ultra-reliable and 
low latency communication are required.

Autonomous UAV-RIS Placement and Navigation
Machine learning techniques for the UAV-RIS 
adjusting locations, motion states, and trajectories 
while considering the dynamic changes in the envi-
ronment like flight environments, control strategies, 
and/or any other bursting-out risks. In the auton-
omous UAV-RIS placement and navigation, it is 
required to model a framework based on double 
deep neural networks as this can help the UAVs-
RIS to navigate and avoid obstacles successfully.

Conclusions
The UAV-RIS concept has emerged as a promising 
technology to improve the coverage and reliabili-
ty of next-generation wireless networks. However, 
the UAV-RIS concept faces various challenges 
for reliable communication. In this article, we first 
present use-cases to deploy UAV-RIS beamform-
ing in various practical scenarios. After that, we 
discuss promising technologies for the UAV-RIS 
concept based on machine learning techniques 
such as RL, DQN, and PER DQN-based beam-
forming policies. To improve the overall perfor-
mance, we propose a beamforming policy by 
employing the PER-based DQN to enhance the 
learning performance. The simulation results show 
that our PER-based DQN approach outperforms 
other machine learning-based beamforming tech-
niques that can be used with UAV-RIS.
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FIGURE 4. Performance of the proposed PER-
based DQN approach for UAV-RIS beamform-
ing in terms of: a) Average mean square error; 
b) QoS satisfaction probability; c) Successful 
transmission probability.
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