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Abstract—Mutual reuse of communication channels among
device-to-device (D2D) pairs enhances the spectral efficiency of
the mobile networks. However, the interference among D2D
pairs mutually reusing the same channels imposes a significant
challenge. In combination with allocation of the transmission
power of each pair for the reused channels, the problem of joint
D2D channel reuse and transmission power allocation becomes
NP-hard. Thus, we employ deep deterministic policy gradient
(DDPG) to decide how the D2D channels should be reused by
the D2D pairs. Then, for the reused channels, we allocate the
transmission power of the D2D pairs sharing the channels using
deep neural network (DNN). However, combining the DDPG-
based channel reuse with the DNN-based transmission power
allocation leads to an accumulation of errors introduced by
DDPG and DNN. The accumulated errors degrade the overall
communication capacity. Thus, we also introduce a coordination
between DNN and DDPG to suppress the effect of the error
accumulation. Simulation results demonstrate that the proposed
DDPG-based channel reuse even without coordination increases
the sum capacity by 15% compared to state-of-the-art works.
On top of this gain, the coordination of both DDPG and DDN
adds another 12% in the sum capacity.

Index Terms—Channel reuse, D2D communication, transmis-
sion power allocation, machine learning, coordination.

I. INTRODUCTION

A direct communication between two devices in proxim-
ity, known as Device-to-Device (D2D) communication, is a
promising trend enabling to increase the data rates and spectral
efficiency of mobile networks [1]. This is due to the fact that
two devices, namely a D2D transmitter and a D2D receiver,
form a D2D pair facilitating a direct transmission of data
without sending data through a base station (BS) [2].

The D2D communication operates in two modes: 1) a
shared mode, where the D2D devices utilize resources al-
located to cellular devices communicating with the base
station, and 2) a dedicated mode, where the D2D devices use
separated resources not assigned to the cellular devices [3].
The shared mode generally provides higher spectral efficiency
than the dedicated one. However, achieving such efficiency
often necessitates complex solutions for resource allocation
and management, which should be able to suppress mutual
interference between cellular and D2D devices. Consequently,
ensuring communication reliability and overall quality of
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service (QoS) is challenging in the shared mode [4]. Since
the shared mode cannot guarantee reliability due to varying
and unpredictable interference, a dedicated mode is preferred
by D2D devices with stringent QoS requirements demanding a
high reliability, such as vehicular or public safety applications.

In the D2D dedicated mode, an efficient spectrum utilization
can be facilitated by the reuse of available resources originally
allocated to each D2D pair [5]. The authors in [6] propose the
channel reuse of D2D pairs aiming to minimize interference
by reusing the channel at least once while exploiting the
minimum number of channels. In [5], [6], however, the sum
capacity is limited, as only a restricted number of channels
are reused to ensure a low interference and a low complexity.

The reuse of all channels in order to maximize the sum
capacity of D2D pairs in the dedicated mode is assumed in
[7]. However, there is no guarantee of any minimal capacity
for the D2D pairs leading often to the case, where some D2D
pairs have no channels at all. In this regard, the authors in
[8] propose a game theory-based channel reuse and the La-
grangian method for power allocation to guarantee a minimal
capacity while maximizing the sum capacity of the users.
Further, the authors in [9], present an algorithm where all D2D
pairs reuse all the access channels concurrently to maximize
spectral efficiency. Then, in [10], the authors propose a two-
stage graph coloring problem to reduce the interference at the
reused channels. Unfortunately, if the number of D2D devices
reusing channels increases, as expected in future generations
of networks, the above-proposed solutions [8]–[10] become
too complex and unable to solve the problem in real-time.

Recently, machine learning has gained attention in ad-
dressing complex resource allocation problems in wireless
communication. For example, deep neural networks (DNNs)
are used for transmission power allocation [11] or deep
reinforcement learning is employed to manage radio resources
[12], [13]. Moreover, the authors in [14], introduce a pointer
neural network to optimize the channel and power alloca-
tion to maximize the total throughput of D2D and cellular
devices while adhering to interference threshold constraints.
In [12]–[14], the authors consider a shared mode for D2D
communication and do not ensure any minimal capacity to
the devices making the solutions not suitable for scenarios,
where a reliable communication is required.

In this paper, we focus on the problem of D2D channel



reuse in dedicated mode to maximize the sum capacity of D2D
devices. To this end, we employ deep deterministic policy
gradient (DDPG), which determines the channels to be reused
and selects the D2D pairs to reuse these channels. Unlike most
of the related works, we set limits neither to the number of
reused channels nor to the number of channels used by each
D2D pair. Such generalization of the reuse is possible due to
the low complexity of developed DDPG compared to solutions
adopted in related works.

To further cope with interference due to reuse, we also
allocate the transmission power of D2D pairs to the reused
channels via DNN, as in [15]. The D2D transmission power
for individual channels determined by the DNN is fed into the
DDPG for channel reuse. Unfortunately, simply concatenated
machine learning-based solutions for the D2D transmission
power allocation and the decision on D2D channel reuse lead
to a relatively high cumulative learning error degrading the
final sum capacity of the D2D pairs, as we show in the paper.
One could consider to simply merge the D2D power allocation
and the D2D channel reuse into a single DNN; however, as
shown in [16], such merging results either in a very large and
hard-to-train neural network or in a poor performance due to
dependencies among inputs and outputs of the DNN (power
allocated to individual channels would depend on the channel
reuse and vice versa). Therefore, on top of the proposed
DDPG for the D2D channel reuse, another contribution of our
work consists in proposed coordination between the machine
learning for the power allocation and for the channel reuse
while maximizing the sum capacity of D2D devices with a
constraint on the the minimum capacity of the D2D pairs.

To summarize, the key novelty of our work resides in the
introduction of DDPG for the prediction of D2D channel reuse
and in the mutual coordination of the DDPG for the D2D
channel reuse with the DNN for the D2D power allocation via
feedback from the environment (network) to mitigate the ac-
cumulated errors introduced by individual learned models. We
show that the proposed predicted D2D channel reuse improves
the sum capacity of the system compared to the solution based
on machine learning algorithms without coordination as well
as compared to the recent related works.

The rest of the paper is structured as follows. In Section II,
we introduce the system model and formulate the problem.
Sections III and IV describe the proposed channel reuse
based on DDPG and the coordination of DNN and DDPG,
respectively. Section V presents simulation results and Section
VI concludes this paper.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we present the system model followed by
the description of machine learning adopted for the power
allocation. After that, we formulate the targeted problem.

A. Communication model

As illustrated in Fig. 1, we consider a general urban area
comprising M D2D devices forming N = ⌊M/2⌋ D2D pairs
operating in dedicated D2D mode [9] while exploiting K

Fig. 1. System model with devices communicating directly using D2D;
bandwidth originally allocated to individual pairs can be reused, as in case
of bandwidth chunks k2 and k3 allocated originally for the second and third
pairs, respectively, in this example.

channels. Then, communication capacity of the n-th D2D pair
at the k-th channel with reuse is:

ck,n =
B

N
log2

(
1 +

pk,ngn,n
σ0 + Ik,n

)
(1)

where B is the total bandwidth (we assume B is initially split
equally among D2D pairs, as in [21], but later on each D2D
pair can use wider bandwidth due to reuse), pk,n represents
the transmission power of the transmitter in the n-th D2D
pair, gn,n denotes the channel quality between the transmitter
and the receiver of the n-th D2D pair, σ0 stands for the noise
level, and Ik,n is the sum of interference caused by all pairs
reusing the same k-th channel to the receiver of the n-th D2D
pair, expressed as:

Ik,n =
∑i=N

i=1,i̸=n
αk,ipk,igi,n (2)

where pk,i is the transmission power of the i-th interfering
device using the k-th communication channel, gi,n presents
the channel quality between the i-th interfering D2D pair to
the receiver of the n-th D2D pair, and αk,i = 1 indicates the
k-th communication channel is reused by the i-th D2D pair
while αk,i = 0 otherwise.

B. Architecture of DNN for Power Allocation

This section describes a general architecture of DNN con-
ventionally employed for power allocation (DNN-PA), as, e.g.,
in [11], [15], [17]. The DNN-PA is comprised of an input
layer, H hidden layers, and an output layer [17]. The inputs
to the DNN-PA are represented by D2D channel qualities
gn,n between the transmitter and the receiver of the n-th
D2D pair. The D2D channel qualities undergo processing
across the hidden layers. The h-th hidden layer is composed
of Vh neurons and the neurons in the h-th layer are with
weights [w1

h, . . . , w
Vh

h ]. The hidden layers are fully connected
and are activated using the sigmoid function. The sigmoid
function guarantees that the output power allocation value
remains constrained within the desired range. The output
layer is activated by a regression function, which predicts the
continuous transmission power p̂k,n.



C. Problem Formulation

The objective of this paper is to maximize the sum ca-
pacity of D2D devices while ensuring the minimum required
capacity cmin of the D2D pairs. The maximum sum capacity is
achieved via combined power allocation and smart reuse of the
D2D communication channels allowing multiple D2D pairs to
reuse channels. Then, the targeted sum capacity maximization
problem is expressed as:

p∗,α∗ = argmax
0≤

∑
k pk,n≤pmax,

αk,n∈{0,1},∀n,∀k

N∑
n=1

K∑
k=1

ck,n

a) αk,n ∈ {0, 1} ∀n ∈ {1, .., N},∀k ∈ {1, ..,K}

b) 0 <
∑

k
pk,n ≤ pmax ∀n ∈ {1, .., N}

c) ck,n ≥ cmin ∀n ∈ {1, .., N}
(3)

where p∗ and α∗ are the optimal p and α, respectively. the
constraint (3a) limits the range of the reuse indicator variable,
(3b) ensures that the power assigned to the D2D pair over all
channels is restricted to the range between 0 and the maximum
allowed transmission power pmax, and (3c) ensures that ck,n
is greater than minimum required capacity cmin.

The problem defined in (3) is a mixed integer non-linear
programming (MINLP) problem and is NP-hard. Therefore,
we employ DDPG as a promising approach for addressing
the challenges associated with channel reuse. To address the
non-convex nature of the transmission power allocation, we
exploit the DNN-based power allocation proposed in [11].
Note that we do not introduce any novelty in the power
allocation itself, since this area is well-investigated. Instead
we focus on integration of power allocation with channel reuse
via coordination of machine learning tools.

In the following sections, we first present the proposed
adaptive channel reuse using DDPG-CR for D2D devices
and then describe the proposed coordination to minimize the
prediction errors through coordination of DNNs and DDPG
during the exploitation of trained machine learning tools.

III. PROPOSED ADAPTIVE CHANNEL REUSE USING
DDPG-CR FOR D2D DEVICES

In this section, we first present the details of the incorpora-
tion of the channel reuse problem into the MDP framework.
Then, we describe the detailed architectural description of
DDPG employed for channel reuse.

A. Incorporate channel reuse into MDP framework

We break down a challenging channel reuse problem into
a framework based on the principles of Markov Decision
Processes (MDP). The MDP is defined by a tuple (S,A, P,R),
where S represents the state space, A is the action space, the
transition probability P defines the probability of the state s
transitioning to state s′ after the execution of the action a, and
R represents the immediate reward following the execution of
the action a. At each state, the MDP selects the action that

maximizes expected sum of discounted future rewards. The
individual components of the MDP are elaborated as follows.

State Space: In this work, the state space of DDPG-CR
comprises two elements: 1) the D2D channel qualities (e.g.,
predicted according to [20]); and 2) predicted power allocation
over reused channels. These two aspects provide key and
sufficient information about interference, thus, influencing
channel reuse. Then, the state space for DDPG-CR is defined
as S(t) = {gn,n, pk,n}

Action Space: The agent controls the channel reuse via the
action a. The action space is defined as a determination is the
k-the channel should be reused by the n-th D2D pair, i.e.,
determining αk,n, hence, the action of DDPG-CR is defined
as A(t) = {αk,n}

Reward: The system computes the immediate reward based
on the action taken and, then, updates the system state. Our
objective is to maximize the overall sum capacity; hence, the
immediate reward R(t) in the time slot t is formulated as
R(s,a)(t) = maxE[ck,n].

The maximization of the sum capacity is achieved via
maximizing the cumulative reward, which is defined as the
profit received by the system over a long-term period of T
time slots. Hence, the cumulative reward is defined as:

R = maxE[
T∑

t=1

R(s,a)(t)] (4)

where E[.] represents the maximization of the expected cu-
mulative reward. The cumulative reward refers to the actual
reward obtained by a decision-making policy in a particular
instance t. The expected cumulative reward is the average sum
of rewards received over T . Before the reuse of channels by
D2D pairs, each pair is initially assigned with a dedicated
channel B/N for all D2D pairs [8]. These channels are then
available for reuse by other pairs using DDPG-CR.

B. Architecture description of DDPG for channel reuse

The DDPG-CR comprises an actor-critic reinforcement
learning-based architecture that involves two DNNs: the actor
DNN and the critic DNN. The actor DNN input states are
composed of factors related to the D2D communication, i.e.,
the D2D channel qualities and the predicted D2D power
allocation. The output is the probability distribution of the
action, i.e., the channels reuse value αk,n for the n-th D2D
pair and k-th channel. The states undergo processing through
Ha

CR hidden layers that are fully interconnected and are
subsequently activated using the rectified linear unit (ReLU)
activation function. The ReLU function is computationally
efficient and introduces non-linearity to the model, which is
crucial in the learning process for complex D2D environmen-
tal patterns imposed via interference caused by channel reuse.

The critic DNN evaluates the channel reuse actions chosen
by the actor, providing feedback on the effectiveness of the
chosen actions for a given state. In addition, critic DNN
estimates the expected cumulative reward from a given state-
action pair. The critic DNN consists of states related to the
D2D dedicated environment as inputs and Hc

CR hidden layers



Fig. 2. Coordinated architecture of DNN-PA and DDPG-CR.

that capture the complex relationships between input state and
expected cumulative reward. The output layer of critic DNN
gives estimated values of the channel reuse value αk,n. The
actor DNN maximizes the expected cumulative reward (i.e.,
the sum capacity), and the critic DNN minimizes difference
between the estimated and actual cumulative rewards.

In the proposed algorithm, the DDPG-CR makes decisions
on reusing allocated channels in the following way. First, the
actor DNN defines a parameterized policy and chooses the
channel reuse for all D2D pairs according to the channel
qualities, and predicted power allocation. Then, the critic
DNN evaluates the current policy by processing the rewards
received from the environment and calculating the loss func-
tion. Both the critic and actor DNNs are updated based on
the loss function, which represents the difference between
the estimated value and the true value of the state-value
function V (s(t)). The state-value function V (s(t)), represents
the reward function starting from specific state s(t) following
the policy π, which determines the actions in each state. The
state-value function V (s(t)) is represented as:

V (s(t)) = E[R(s,a)(t)|s(t), π] (5)

The critic DNN estimates the expected reward using a state-
value function. Whereas, the actor DNN determines the true
reward by selecting the action for a given state. The critic
DNN learns to improve its predictions over time by comparing
the expected reward with the actual rewards.

The loss function for updating the actor and critic DNNs Lac
is defined as Lac(t) = V (s(t+1))−V (s(t)). The critic DNN
updates the weights of its DNN according to the loss function
as wt+1 ← wt + βcδw(Lac(t))2, where βc is the learning rate
of critic DNN and the squared loss function helps to amplify
discrepancies, aiding efficient gradient-based optimization,
and ensures non-negativity and smoothness in convergence
(better generalization). Now, the actor DNN takes the channel
to reuse decision maximizing the expected cumulative rewards
according to the current state. The weight θac of the actor DNN
is updated using the loss function and the policy gradient as:

θac
t+1 ← θac

t + βaδθac [logπθac (a(t)|s(t))]Lac(t)] (6)

where βa is learning rate of actor DNN and πθac(a(t)|s(t)) is
output probability for each action computed by actor DNN.

IV. PROPOSED COORDINATION OF DNN AND DDPG
DURING EXPLOITATION OF TRAINED NETWORKS

The coordination between the DNN-PA and DDPG-CR
is connected to the exploitation (inference) stage of the
trained DNN-PA and DDPG-CR as illustrated in Fig. 2.
The coordination of DNN-PA with DDPG-CR during D2D
communication stems from the necessity to fulfill the con-
straints inherent in the targeted sum capacity maximization
problem. We implement the coordination from DDPG-CR to
DNN-PA using a loss function that gives feedback to DNN-
PA to update its internal weights. The feedback indicates
that there is a potential error in the predictions of power
allocation. In the loss function, we consider a logarithmic
component that continuously encourages a high sum capacity
and penalizes a low sum capacity. We also incorporate the
penalty in case the constraints are not fulfilled, i.e., if the
differences [cmin− ck,n] and [Ik,n− Imax] are positive. Unlike
the traditional representation of typical loss functions based
on mean square error, in our case, the penalties are added to
satisfy the constraints in (3). Hence, the loss function used as
the feedback from DDPG-CR to DNN-PA is defined as:

Lcr
k,n = E[− log(ck,n) + max(0, [cmin − ck,n])

+ max(0, [Irk,n − Imax])
(7)

The loss function Lcr
k,n is calculated every iteration and is

continuously fed back to DNN-PA to update its weights.
The weights are updated based on the objective function’s
gradients during the training so that:

θcr
q+1 ← θcr

q + ϵ▽θcrLcr
k,n(θ

cr
q ) (8)

where q is the iteration of the update, 0 < ϵ ≪ 1 is the
initial learning rate of both DNNs (note that both DNNs are
initialized with the same initial learning rate to maintain syn-
chronization and a similar learning pace of both), ▽θcrLcr

k,n(θq)
is the gradient of the loss function Lcr

k,n for the parameters θ
at the iteration q, and ▽θcr is the gradient element, which is
computed concerning the loss function and is used to adjust
the parameters to minimize the loss. The value of the gradient
is determined by the partial derivatives of the loss function
▽θcrLcr

k,n = (
∂Lcr

k,n

∂θcr
1
,
∂Lcr

k,n

∂θcr
2
, ...,

∂Lcr
k,n

∂θcr
η
) concerning each layer’s

parameters, where η represents the number of parameters.
Similar to the feedback from DDPG-CR to DNN-PA, the

loss function as feedback from DNN-PA to DDPG-CR is
defined as:

Lpa
k,n = E[− log(ck,n) + max(0, [cmin − ck,n])

+ max(0, [pk,n − pmax])
(9)

The weights of the actor and critic DNNs are updated based on
the objective function’s gradients during the training, similar
to (8), i.e.,

θpa
q+1 ← θpa

q + ϵ▽θpaLpa
k,n(θ

pa
q ) (10)

The proposed channel reuse and coordination during the
exploitation of the trained DNN and DDPG are summarized



in the following steps: i) the D2D channel qualities gn,n
are fed into DNN-PA to predict the transmission power pk,n
for the n-th D2D pair at the k-th channel; ii) using D2D
channel qualities gn,n p∗k,n, the channel reuse α∗

k,n is predicted
using DDPG-CR; iii) Lcr

k,n s determined using (7) and LPA
k,n

is determined using (9) to maximize the sum capacity of all
D2D users over all channels; iv) the weights of DNN-PA and
DDPG-CR are updated via feedback using (8) and (10).

Algorithm 1 Coordination of DNN and DDPG via feedback.
1: for iteration q do
2: Predict pk,n using DNN-PA
3: Calculate Lpa

k,n using (9) to ensure ck,n > cmin &
pmin <

∑K
k=1 pk,n ≤ pmax

4: Use pk,n and gn,n to predict αk,n using DDPG-CR
5: Determine Lcr

k,n using (7) to ensure ck,n > cmin &
Irk,n < Imax

6: Update θpa
q+1 using (10) and θcr

q+1 using (8)
7: end for

V. PERFORMANCE EVALUATION

This section describes a simulation scenario and settings
and, then, provides a discussion of the simulation results.

A. Simulation scenario, models and competitive algorithms

We consider four BSs and 16-96 devices (composing 8-
48 D2D pairs) randomly distributed so that the maximum
distance between the D2D transmitter and the D2D receiver is
50 meters. The minimum and maximum transmission power
for D2D transmitters is 0 dBm and 23 dBm, respectively
[17]. The carrier frequency is set to 2 GHz and bandwidth
is 20 MHz. A common level of thermal noise of -110 dBm
is assumed. We consider a mixed LoS/NLoS scenario. In the
case of LoS, the path loss is modeled in line with the 3GPP
outdoor-to-outdoor environment defined in [19]. The NLoS
channel interrupted by one or more buildings is subject to an
additional attenuation of 10 dB per wall [20].

DNN-PA is composed of three hidden layers with 60, 30,
and 20 neurons in their respective layers. The batch size is
set to 32, and the learning rate is 0.01. In DDPG-CR, the
actor DNN comprises three hidden layers with 32, 16, and 8
neurons, and the critic DNN consists of two hidden layers with
50 and 20 neurons in each layer. These settings are determined
by a trial-and-error approach. The experience buffer length is
106, the discount factor is 0.99, the mini-batch size is 64, the
actor learning rate is 0.001, and the critic learning rate is 0.01.
The code of implemented proposal is available at GitLab 1.

We compare the performance of our proposed concept
of the coordination of DNN-PA and DDPG-CR with the
following competitive works:

• DDPG-CR and DNN-PA w/o coordination: The state-of-
the-art solution for transmission power allocation [11]

1Code of the proposal in Matlab: https://gitlab.fel.cvut.cz/mobile-and-
wireless/codes/publications/Coordinated-Machine-Learning-for-Channel-
Reuse-and-Transmission-Power Allocation-for-D2D-Communication

based on DNN is implemented in a cascade/sequential
way without any coordination with the proposed DDPG-
CR based channel reuse.

• Minimum interference-based channel reuse (MI-CR) and
DNN-PA: The state-of-the-art work for transmission
power allocation according to [11] and the channel reuse
minimizing interference proposed in [6] are integrated.
The D2D pairs follow two conditions for channel reuse:
1) D2D pairs utilize the sub-band of at least one other
D2D pair; 2) exploit the minimum number of channels
for reuse to reduce control overhead and complexity.

• DNN-PA without reuse: Only state-of-the-art transmis-
sion power allocation [11] based on DNN is implemented
without channel reuse.

B. Simulation results

In Fig. 3, we investigate the sum capacity of the proposal
and competitive state-of-the-art works for varying numbers of
D2D devices. The sum capacity increases with the number of
D2D devices since the channels are exploited more efficiently.

Comparing the sum capacity of the proposal, where DNN-
PA with DDPG-CR are coordinated to the case without
coordination, DNN-PA with MI-CR, and DNN-PA with no
reuse reveals significant gain in the sum capacity introduced
by the proposal of up to 12.9%, 27%, and 35.5%, respectively.
More specifically, there is almost a 15.2% gain by employing
DDPG-based channel reuse in D2D communication compared
to MI-CR and no reuse case. Moreover, the additional 11.8%
gain is obtained due to the coordination of DNN-PA and
DDPG-CR. In addition, we show that if we increase cmin

from 2 Mbps to 10 Mbps, the sum capacity is decrease by
8.9% in the proposed algorihtm and 14%, 39.7%, and 55%
in DNN-PA with DDPG-CR without coordination, DNN-PA
with MI-CR, and DNN-PA with no reuse, respectively.

Fig. 4 depicts the impact of the cmin on the ratio of satisfied
D2D devices, referring to devices that achieve the capacity of
at least cmin. As the minimum required capacity increases, the
satisfaction ratio decreases across all algorithms due to limited
communication resources within the system. Comparatively,
the proposed approach with coordination between DDPG-CR
and DNN-PA surpasses the DDPG-CR and DNN-PA without
coordination, DNN-PA and MI-CR, and DNN-PA without
reuse by around 10.1%, 18.3%, and 25.5%, respectively. The
gain is around 8.2% by employing DDPG-based channel reuse
while attaining the satisfaction of D2D devices compared
to the MI-CR case. Moreover, the additional 10.1% gain is
attained due to the coordination of DNN-PA and DDPG-CR.

In Fig. 5, we delve into the convergence of the proposed
coordinated DNN-PA and DDPG-CR and compare it with the
convergence of DNN-PA and DDPG-CR without coordination.
Notably, the coordinated DNN-PA and DDPG-CR of vary-
ing numbers of D2D devices, i.e., 16 and 48 D2D devices
demonstrate an enhanced sum capacity convergence, with
improvements of around 12.6%, 26.5%, and 36.1% compared
to the DDPG-CR and DNN-PA without coordination, DNN-
PA and MI-CR, and DNN-PA without reuse. The gain is



16 32 48 64 80 96

Number of D2D devices, M [-]

0

50

100

150

200

250

300

350

400

450

S
u

m
 c

a
p

a
c
it
y
 [

M
b

p
s
]

DDPG-CR and DNN-PA w. coord.

DDPG-CR and DNN-PA w/o. coord.

MI-CR and DNN-PA

DNN-PA without reuse

C
min

  = 2 Mbps

C
min

  = 10 Mbps

Fig. 3. Sum capacity for various numbers of D2D devices (full solid line is
for cmin = 2 Mbps, whereas dotted line is for cmin = 10 Mbps).

1 4 7 10 13 16

C
min

 [Mbps]

0.8

0.85

0.9

0.95

1

R
a

ti
o

 o
f 

S
a

ti
s
fi
e

d
 D

e
v
ic

e
s
 [

-]

DDPG-CR and DNN-PA w. coord.

DDPG-CR and DNN-PA w/o. coord.

MI-CR and DNN-PA

DNN-PA without reuse

Fig. 4. Ratio of satisfied devices for various cmin (M = 48, crk,n > cmin).

0 200 400 600 800 1000

Number of Iterations [-]

0

50

100

150

200

250

300

S
u
m

 C
a
p
a
c
it
y
 [
M

b
p
s
]

DDPG-CR and DNN-PA w. coord.

DDPG-CR and DNN-PA w/o. coord.

MI-CR and DNN-PA

DNN-PA without reuse
M = 48

M = 16

Fig. 5. Convergence of proposed DNN-PA and DDPG-CR with coordination
for 16 and 48 D2D devices.

around 14.8% by employing DDPG-CR and 12.1% gain due
to the coordination of DNN-PA and DDPG-CR.

VI. CONCLUSION

We address the challenge of efficiently reusing D2D com-
munication channels in mobile networks to enhance the
sum capacity of the D2D devices using deep reinforcement
learning-based DDPG for D2D pairs. Additionally, we utilize
DNNs to predict D2D transmission power for each device at
each channel to cope efficiently with interference due to reuse.
Since both machine learning solutions (for reuse and power
allocation) naturally impose an error in their decision, we
also propose coordination between DNN and DDPG to reduce
prediction errors. The simulation results demonstrate the effec-

tiveness of the proposed scheme, showcasing an enhancement
in sum capacity by up to 15% for employing DDPG-CR, and
an increase of around 12% due to the coordination of DNN-PA
and DDPG-CR.
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